

RETA Book 2 Chapter 9 – Two Stage Systems Peter Thomas, P.E. | Resource Compliance

CIRO Exam Content

Fundamentals and Introductory Concepts	30 Questions
Safety Standards & Procedures	12 Questions
Electricity	12 Questions
Valves and Controls	12 Questions
Two-Stage Refrigeration System Operations	10 Questions
Other Refrigeration System Operations	13 Questions
Heat Flow of Refrigeration Systems	15 Questions
Troubleshooting	6 Questions
Measuring System Performance	14 Questions

Objectives of This Chapter

- 1. Discuss two stage systems
- 2. Understand the way intercoolers work
- 3. Understand why it costs less in energy to produce refrigeration with two stages of compression instead of one

Low Evaporator Temperatures

- Lower evaporator temperature leads to lower evaporator pressure
- Greater distance between the suction and discharge pressure leads to increased compression ratio
- Higher compression ratio leads to increased work (heat) that the compressor must put into a pound of gas in order to compress it to the required discharge pressure

Intro to Two Stage Compression

• Greater compression ratio = Higher discharge temperature

Intro to Two Stage Compression

- Greater compression ratio = Higher discharge temperature
- Cannot cool to extremely low temperatures in a single stage because we would break down the oil

Intro to Two Stage Compression

- Assume -40°F evaporator temperature, 95°F condensing
 - $\hfill\square$ Single stage \rightarrow 20:1 Compression Ratio
 - Huge economic penalties for single stage
 - $\hfill\square$ Large compression ratio \rightarrow higher heat of compression
- White Board Comparison

Providing Solutions. Simplifying Regulation.

Booster vs High Stage Compressors

- Booster Compressor
 - The first stage of a multi-stage system compressor is a booster compressor.
 - Receives vapor from the evaporator.
 - Discharge from this compressor goes to the intermediate pressure.
 - Characterized as a high volume, low compression ratio machine.

Providing Solutions. Simplifying Regulation.

Booster vs High Stage Compressors

- High Stage Compressor
 - The second stage of a multi-stage system.
 - Receives vapor that has been compressed by the booster compressor.
 - Discharge from this compressor goes to the condenser.
 - The rotary vane compressor cannot be used as a high stage compressor, only booster.

Physical Characteristics of Low Temp Operation

- As evaporator temperature is lowered
 - Discharge temperature increases
 - Oil degrades faster
 - Efficiency decreases
 - Power consumption increases
 - Oil return from evaporators becomes difficult
 - Compression ratio increases

Evaporator Psig/Temp °F	Suction Psia	Discharge Psia	Compression Ratio	Theoretical Discharge Temperature	Suction Gas Cubic Feet per Ton	Hp / Ton (est.)
<i></i>					2.04	0.06
45 / 30°F	59.74	195.8	3.28	190°F	2.04	0.90
33 / 20°F	48.21	195.8	4.06	204°F	2.52	1.16
24 / 10°F	38.51	195.8	5.08	228°F	3.14	1.37
16 / 0°F	30.42	195.8	6.44	251°F	3.95	1.75
9 / -10°F	23.74	195.8	8.25	275°F	5.01	1.89
4 / -20°F	18.30	195.8	10.70	295°F	6.47	2.38
2" hg / -30°F	13.90	195.8	14.09	325°F	8.44	2.84
9" hg / -40°F	10.35	195.8	18.92	355°F	11.13	3.43

Physical Characteristics of Low Temp Operation

- Screw compressor can operate up to 20:1 compression ratio because of oil cooling
 - □ 3.1 Bhp/Tr at -40°F/95°F, Single Stage
 - □ 2.1 Bhp/Tr at -40°F/95°F, Two Stage

Compare Single-Stage and Two-Stage

- Given:
 - □ Low stage evaporating temperature is -28°F with no superheat
 - Condensing temperature is 95°F and there is no liquid subcooling at the condenser
 - Interstage pressure is 33 psig
- Single Stage: 284 Bhp
- 2-Stage: 97 Bhp & 130 Bhp = 227 Bhp

Two-Stage Compression Systems

Two Type of Intercoolers

1. Shell & Coil

Internally Compounded Compressors

• One compressor capable of doing both stages of compression

Two Stage Systems and Non-Condensables

- Low stage almost always operates in a vacuum
- Leakage at joints, valve stems, and shaft seals is very common and hard to detect
- Air accumulates in the condenser
- Water accumulates in the evaporator
- Solution...
 - Seal cap valves
 - Auto-purger

Cascade Systems

- Systems below -100°F
- Two different refrigerants
- Why cascade systems?
 - -100°F means 27.4" Hg vacuum for ammonia
 - Lubricants are stiff at -100°F
 - □ -100°F/95°F would be a 159:1 compression ratio for single stage

Providing Solutions. Simplifying Regulation.

Cascade Systems

Cascade Systems

- One refrigerant will be at a higher pressure than commonly used refrigerants (no vacuum)
- Low temp receiver typically requires a storage pressure of 650 psig (ethane)

Summary

- Two stage systems require less Bhp/Tr than single stage systems
- Low temp systems require large overall compression ratios
- By using two stages of compression the function of de-superheating and the function of medium temperature cooling units can be combined as suction to the second stage of compression

Summary

- The overall compression ratio is not the sum of the two individual ratios, but rather the product of the two ratios
- Discharge temp from each stage of compression must be suitable for the oil used in the compressors
- Low stage compressors are high volume, low HP
- High stage compressors have lower volume, high HP

Summary

- The intercooler is used to desuperheat the discharge gas from the first stage of compression
- More than one type of intercooler is available
- Purger is very important in low temp application
- A cascade system is not a 2-stage system. It is two single stage systems.

Providing Solutions. Simplifying Regulation.

Questions?

pthomas@resourcecompliance.com