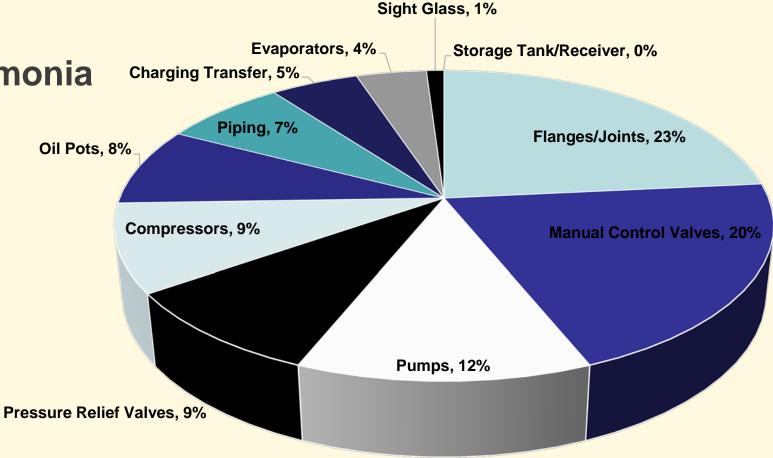


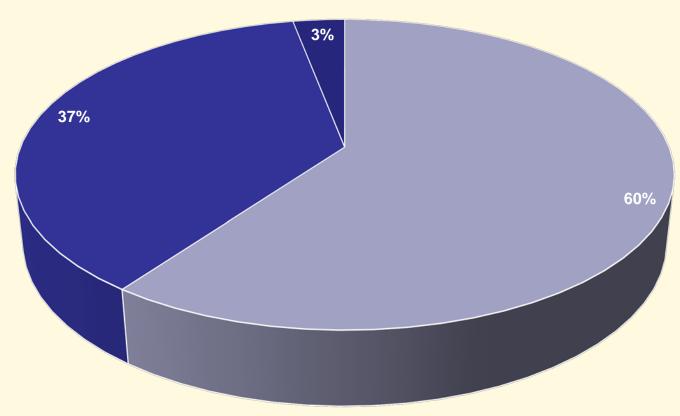
Mechanical Integrity


Common Findings and Recommendations

Peter Thomas, P.E., CSP – Resource Compliance, Inc.

IIAR Survey

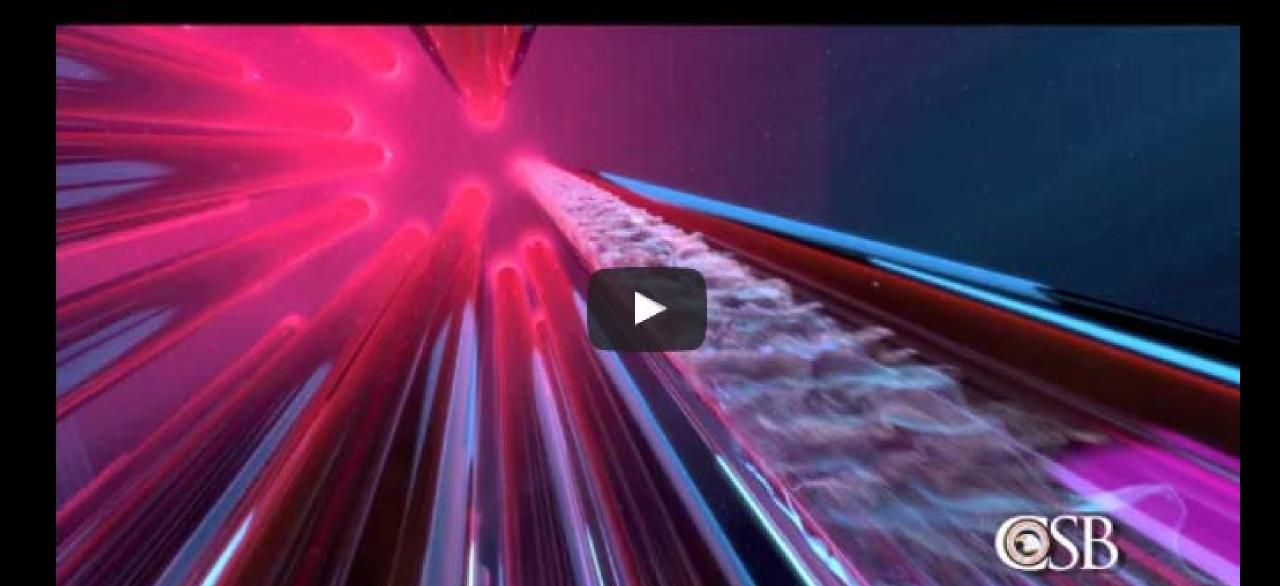
Where do most ammonia releases occur?

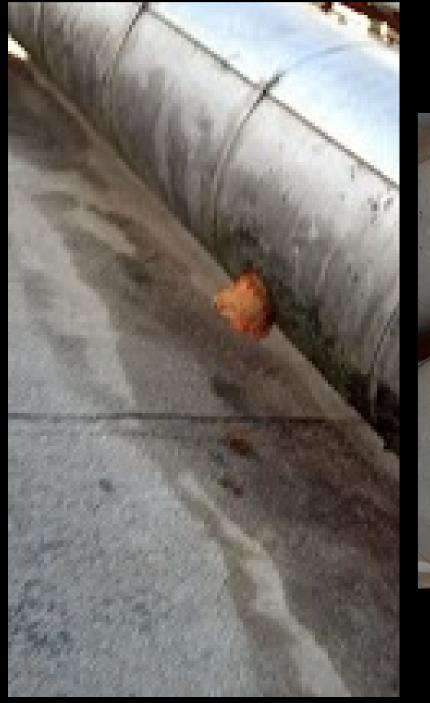


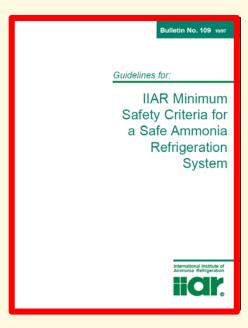
IIAR Survey

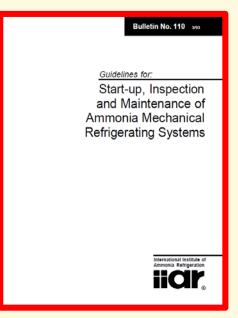
Why do most ammonia releases occur?

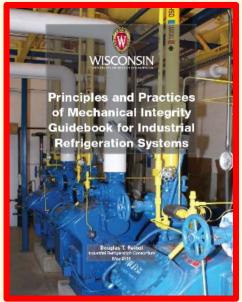
- Mechanical Failure
- Other (Natural Disaster, Fire, Ammonia Theft, etc.)

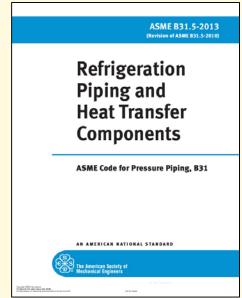


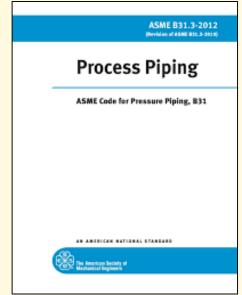









Pipe Wall Thickness


Key RAGAGEP documents

Reference

IRC MI Guidebook

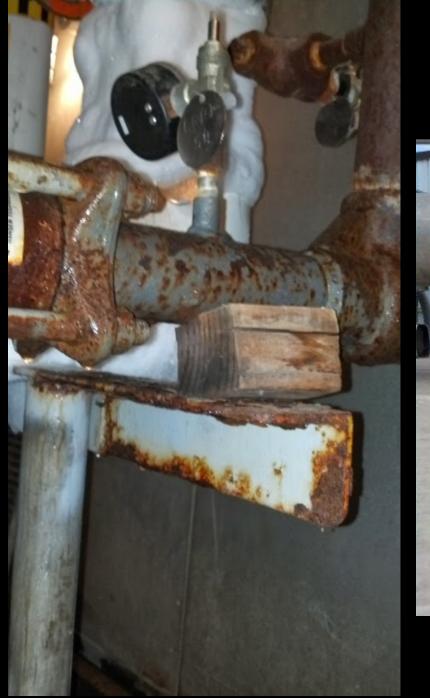
Table 4-5: Piping mechanical integrity action summary	(adapted from Section 11.1.5 of RP 574).

	(i		ss (in)						
Nominal Size (in)	Sch	Outside Diameter (in)	Nom. Wall Thickness (in)	Min Nom. Wall Thickness	Wall thickness deviation from nominal	Alert Wall Thickness	Wall thickness deviation from nominal	Replace Wall Thickness	Wall thickness deviation from nominal
Ž		0		(in)	(%)	(in)	(%)	(in)	(%)
1/2"	80	0.840	0.147	0.129	(12.5)	0.080	(45.6)	0.044	(70.0)
172	160	0.040	0.294	0.257	(12.5)	0.080	(72.8)	0.080	(72.8)
3/4"	80	1.050	0.154	0.135	(12.5)	0.080	(48.1)	0.046	(70.0)
	160		0.308	0.270	(12.5)	0.080	(74.0)	0.080	(74.0)
1"	80	1.315	0.179	0.157	(12.5)	0.080	(55.3)	0.054	(70.0)
1-1/4"	80	1.660	0.191	0.167	(12.5)	0.080	(58.1)	0.057	(70.0)
1-1/2"	80	0.200	0.200	0.175	(12.5)	0.090	(55.0)	0.060	(70.0)
2"	40	2.375	0.154	0.135	(12.5)	0.100	(35.1)	0.046	(70.0)
	80		0.218	0.191	(12.5)	0.100	(54.1)	0.065	(70.0)
2-1/2"	40	2.875	0.203	0.178	(12.5)	0.100	(50.7)	0.061	(70.0)
3"	40	3.500	0.216	0.189	(12.5)	0.110	(49.1)	0.065	(70.0)
4"	40	4.500	0.237	0.207	(12.5)	0.120	(49.4)	0.071	(70.0)
5"	40	5.563	0.258	0.226	(12.5)	0.120	(53.5)	0.077	(70.0)
6"	40	6.325	0.280	0.245	(12.5)	0.130	(53.6)	0.084	(70.0)
8"	40	8.625	0.322	0.282	(12.5)	0.130	(59.6)		9
10"	40	10.75	0.365	0.319	(12.5)	0.136	(62.6)	of o	gr SS
12"	ST	12.75	0.375	0.328	(12.5)	0.162	(56.9)	8 0 0	to ipir
14"	30	14.0	0.375	0.328	(12.5)	0.178	(52.6)	atic	y p
16"	30	16.0	0.375	0.328	(12.5)	0.203	(45.9)	Requires evaluation of minimum thickess to satisfy piping design pressure	
18"	ST	18.0	0.375	0.328	(12.5)	0.228	(39.1)		

Table 4-6: Piping inspection concern level summary for given values of wall thickness, t.

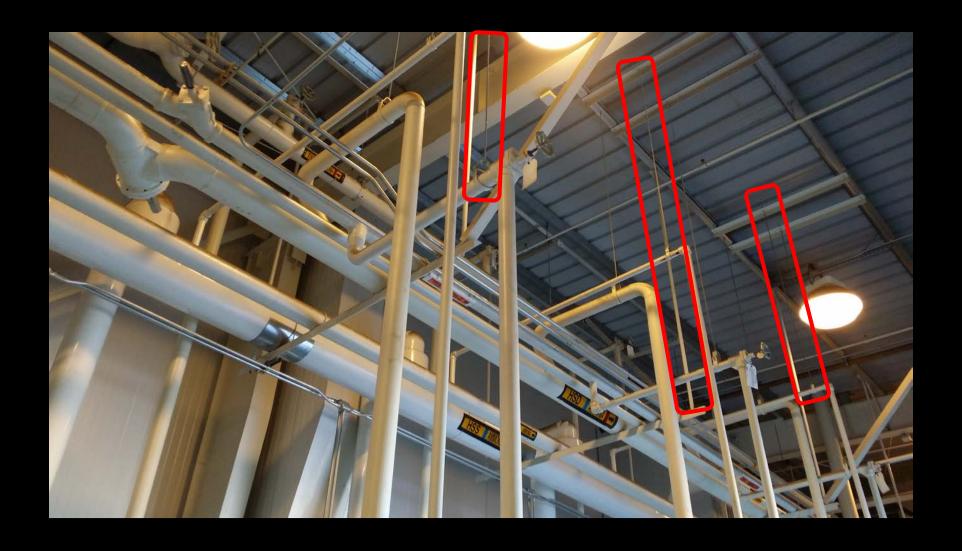
Action Required/Comments

Criteria


Level

Flag

		· iug	Action Required Comments	11010101100
1	$t \leq 0.3 * t_{nom}$		Piping at this wall thickness must be repaired or replaced unless an engineering analysis shows it is fit for continued operation. If the engineering analysis concludes that the piping is fit for continued operation, all active surface corrosion must be arrested and the surface coating restored without delay.	Gerber et al (1992)
2	$0.3 * t_{nom} \le t < t_{alert}$		Piping below the alert wall thickness requires a more detailed engineering analysis to determine t_{min} for the portion of the piping system in question as a basis for evaluating its fitness for continued operation. If the measured wall thickness, t , at any location is less than the minimum allowable wall thickness $(t < t_{min})$, the pipe is not fit for continued operation and must be replaced promptly. If the pipe wall is above the minimum wall thickness, all active corrosion must be arrested/converted and the surface restored as soon as possible.	API RP 574 (2009) & ASME B31.5 (2013)
3	$t_{olort} \le t < 0.875 * t_{nom}$	0	If the measured wall thickness, t , is less than nominal minus the mill tolerance but greater than t_{alevt} , the piping can continue operation. As the wall thickness approaches t_{alevt} , consider increased inspection frequency.	API RP 574 (2009) & ASME B31.5 (2013)
4	$t \geq \textit{O.875} * t_{\textit{nom}}$		Piping at this wall thickness is fit for continued operation. Ensure that any active surface corrosion is arrested and the surface restored in a timely manner.	Original design per ASME B31.5 (2013)



Pipe Supports

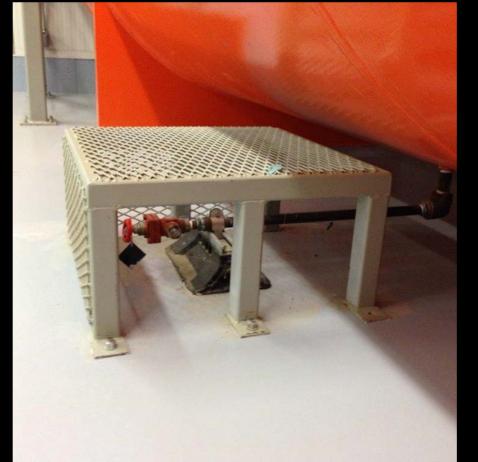
ANSI/IIAR 2-2014 Appendix F

Nominal Pipe Size	Maximum Span	Minimum Rod Diameter
Up to 1	7	1/8
1-1/4 - 1-1/2	9	3/8
2	10	3/8
2-1/2	10	1/2
3	12	1/2
4	14	5/8
5	16	5/8
6	17	3/4
8	19	7/8
10	22	7/8
12	23	7/8

Service Provision

Maintenance Accommodation

- Equipment shall be accessible for maintenance, as required by the Mechanical Code. [ANSI/IIAR 2-2014 §5.12.1]
- Shell and Tube Condenser [ANSI/IIAR 2-2014 §10.4.4]
- Plate Heat Exchanger Condenser [ANSI/IIAR 2-2014 §10.5.4]
- Double-Pipe Condenser [ANSI/IIAR 2-2014 §10.6.4.1]
- Shell and Tube Evaporator [ANSI/IIAR 2-2014 §11.3.1.4, ANSI/IIAR 2-2014 §11.3.2.4]
- Plate Heat Exchanger Evaporator [ANSI/IIAR 2-2014 §11.4.4]
- Scraped Surface Heat Exchanger [ANSI/IIAR 2-2014 §11.5.4]
- Pressure Vessels [ANSI/IIAR 2-2014 §12.6.1]


Safe Access

Valves

- Stop valves shall be readily accessible from the machinery room floor or a level platform [2013 CMC §1112.3]
- Manually operated valves that are inaccessible from floor level shall be operable from portable platforms, fixed platforms, ladders, or shall be chain operated. [ANSI/IIAR 2-2014 §6.3.3.1]
- Manually operated isolation valves identified as being part of the system emergency shutdown procedure shall be directly operable from the floor or chain operated from a permanent work surface. [ANSI/IIAR 2-2014 §6.3.3.2, §13.3.7]
- Relief device arrangements shall be configured to allow access for inspection, maintenance, and repair. [ANSI/IIAR 2-2014 §15.2.3]
- Similar requirement dating back to 1978

Questions?

Peter Thomas, P.E. (559) 994-0162 pthomas@resourcecompliance.com