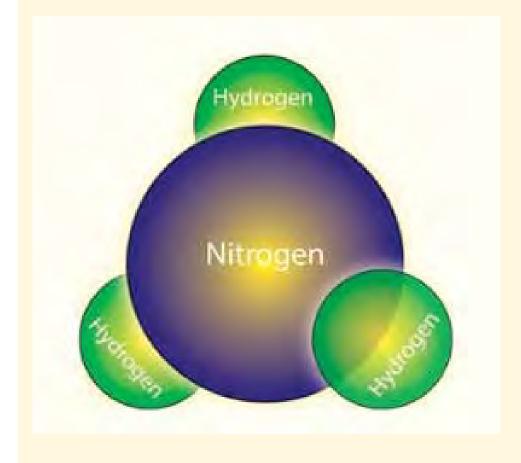


Introduction to Ammonia Refrigeration Uriah Donaldson, OHST – Process Safety Consultant

Overview of this Talk


- 1. Benefits of Ammonia Refrigeration
- 2. The Importance of Safety for Ammonia Refrigeration

The Benefits of Ammonia Refrigeration

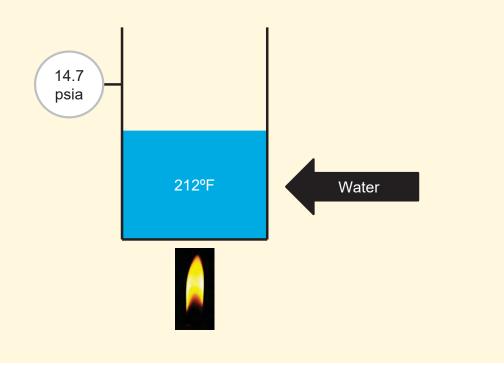


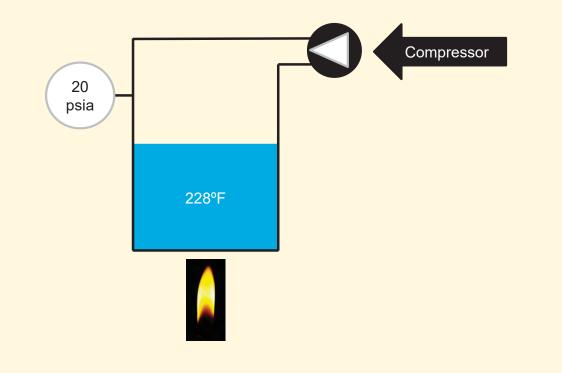
- 1. Naturally occurring compound (NH3)
- 2. If released, it naturally breaks down into its basic elements
- 3. Not ozone depleting (GWP=0)
- 4. Vapor density is less than air
- 5. Natural pungent, self-alarming odor
- 6. Does not mix with oil
- 7. Less expensive than synthetic refrigerants
- 8. Ammonia is a high capacity refrigerant
- Ammonia is a widely used refrigerant with support from engineers, service technicians, and safety experts

The Importance of Safety for Ammonia Refrigeration

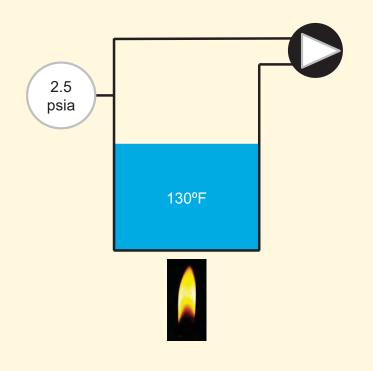
Introduction to Ammonia Refrigeration

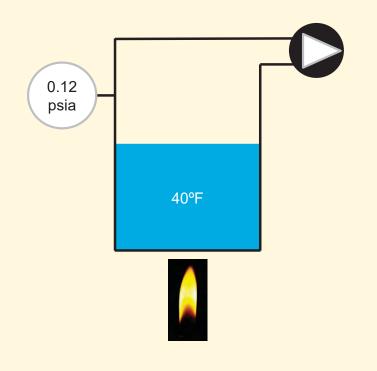
Peter Thomas, P.E., CSP – Resource Compliance, Inc.

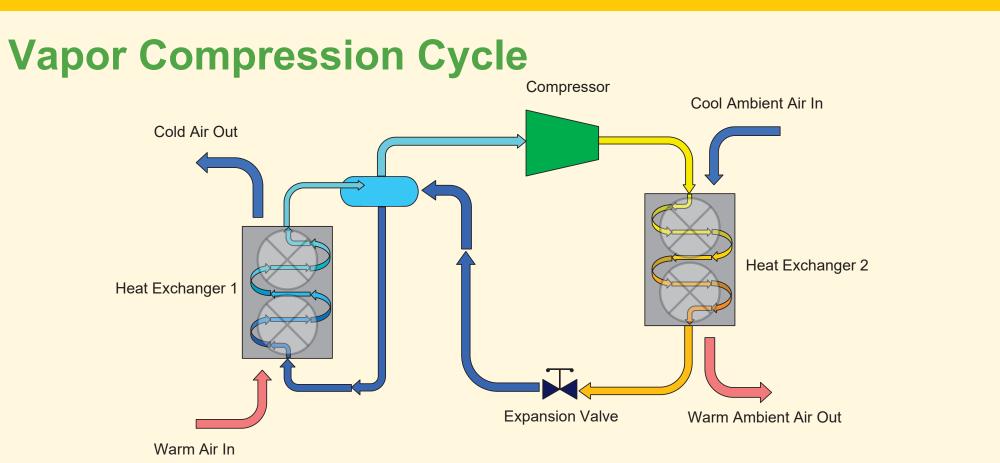

Refrigeration

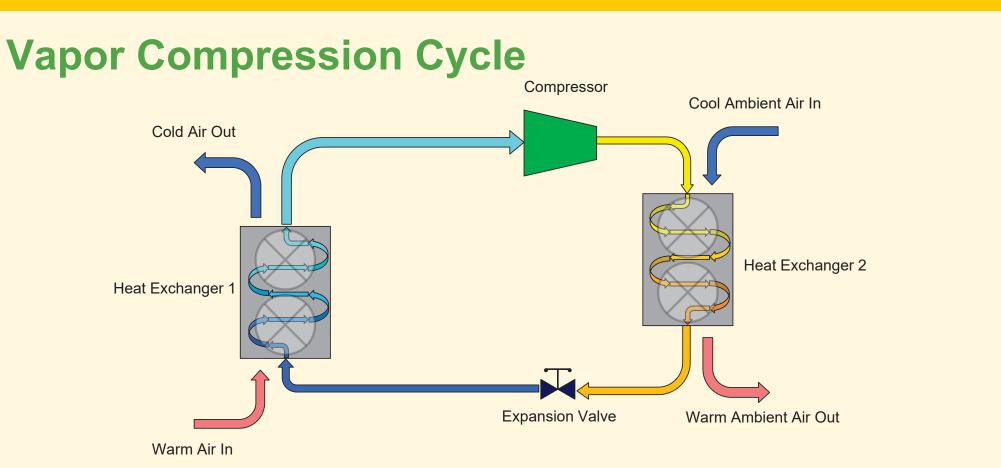


Providing Solutions. Simplifying Regulation.









Refrigeration

- Manipulation of the of the pressure of Substance 1 in order to reduce the temperature of Substance 1 for the purpose of achieving a desired lower temperature in Substance 2.
- <u>Substance 1</u> = Refrigerant
- <u>Substance 2</u> = Air, water, grapes, wine, apples, beef, wine, oranges, peaches, chicken, ice.....

Heat Transfer Equation - Sensible

$$Q = M \times C \times \Delta T$$

- Where:
 - Q = heat required (BTU)
 - M = mass of substance (lb)
 - C = specific heat capacity (BTU/lb-°F)
 - $\Delta T = T_2 T_1 = Difference$ between the starting temperature and the ending temperature (°F)

Example 1

• Determine the BTUs required to warm 2 lb of water from 40°F to 70°F.

 $Q = M \times C \times \Delta T$

$$Q = 2lb \times 1 \frac{BTU}{lb \cdot {}^{\text{o}}F} \times (70{}^{\text{o}}F - 40{}^{\text{o}}F)$$

Q = 60 BTU

Example 2

• Determine the BTUs required to warm 2 lb of iron from 40°F to 70°F.

 $Q = M \times C \times \Delta T$

$$Q = 2lb \times 0.118 \frac{BTU}{lb \cdot {}^{\underline{\circ}}F} \times (70{}^{\underline{\circ}}F - 40{}^{\underline{\circ}}F)$$

$$Q = 7.08 BTU$$

Heat Transfer Equation - Latent

$$Q = M \times h_L$$

- Where:
 - Q = heat required (BTU)
 - M = mass of substance (lb)
 - \circ h_L = specific enthalpy (BTU/lb)

Example 3

• Determine the BTUs required to boil 2 lb of 212°F water into steam.

 $Q = M \times h_L$

$$Q = 2lb \times 970 \frac{BTU}{lb}$$

$$Q = 1,940 BTU$$

Heat Transfer Equation - Combined

$$Q_{Total} = Q_{Sensible} + Q_{Latent}$$

- Where:
 - \circ Q_{Total} = total heat required (BTU)
 - Q_{Sensible} = sensible heat (BTU)
 - \circ Q_{Latent} = latent heat (BTU)

Example 4

• Determine the BTUs required to boil 2 lb of 40°F water into steam.

$$Q_{Total} = Q_{Sensible} + Q_{Latent}$$

$$Q_{Sensible} = M \times C \times \Delta T$$

$$Q_{Latent} = M \times h_L$$

$$Q_{Total} = (M \times C \times \Delta T) + (M \times h_L)$$

$$Q_{Total} = \left(2lb \times 1 \frac{BTU}{lb \cdot {}^{\circ}F} \times (212{}^{\circ}F - 40{}^{\circ}F)\right) + (2lb \times 970 \frac{BTU}{lb})$$

$$\underline{Q_{Total}} = 2,284BTU$$

Heat Energy Profile for Water Vapor (0.5 BTU/lb-oF) 300 Solid and Liquid (144 BTU/lb) 250 Liquid and Vapor (970 BTU/lb) 200 Temperature (°F) Liquid (1. BTU/Ib-oF) 150 100 50 Solid (0.5 BTU/lb-°F) 200 400 600 800 1000 1200 1400 BTUs Applied From 0°F

Example 5

 Determine the BTUs required to freeze 2,000 lb (1 ton) of 32°F water into ice.

$$Q = M \times h_L$$

$$Q = 2,000lb \times 144 \frac{BTU}{lb}$$

$$Q = 288,000 BTU$$

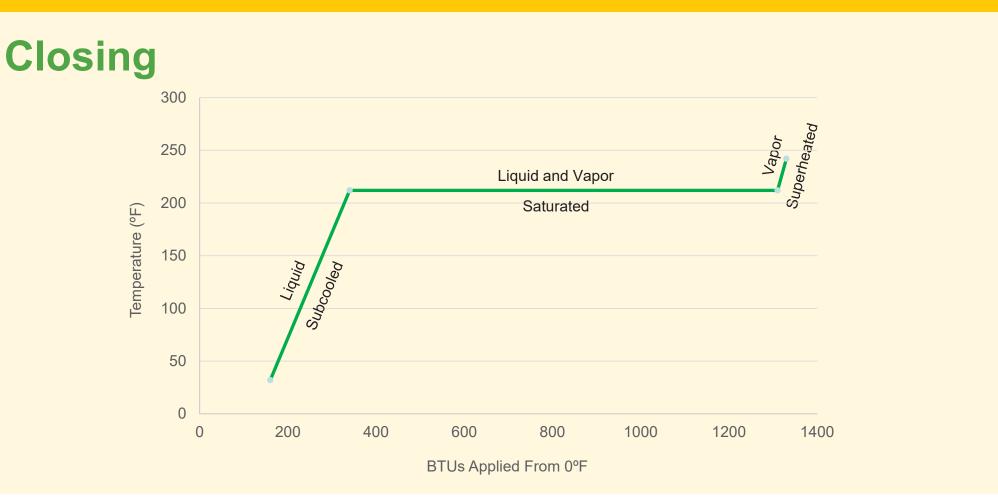
Example 6

 If 2,000 lb of ice must be formed in 24 hours, what is <u>rate of heat</u> <u>transfer</u>?

$$\dot{Q} = \frac{Q}{t}$$

$$\dot{Q} = \frac{288,000BTU}{24hr}$$

$$\dot{Q} = 12,000 \frac{BTU}{hr}$$


$$\dot{Q} = 1 Tr$$

Refrigeration Tonnage

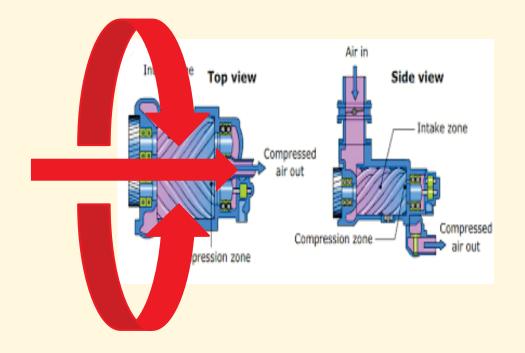
- 1 Ton of Refrigeration (Tr) is defined as the amount of heat required to freeze 2,000 lb of 32°F water into ice.
- 1 Tr = 12,000 BTU/hr

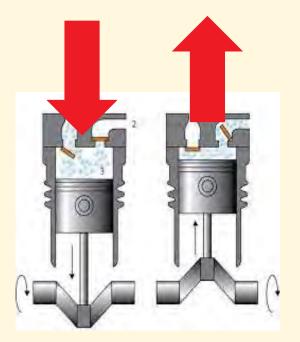
BREAK

Refrigeration Components

Jennifer Montee – Resource Compliance, Inc.

Types of Compressors




Providing Solutions. Simplifying Regulation.

Screw Compressor vs. Reciprocating Compressor

COMPLIANCE

Providing Solutions. Simplifying Regulation.

Reciprocating Compressor Components

COMPRESSOR

Reciprocating Compressor Components

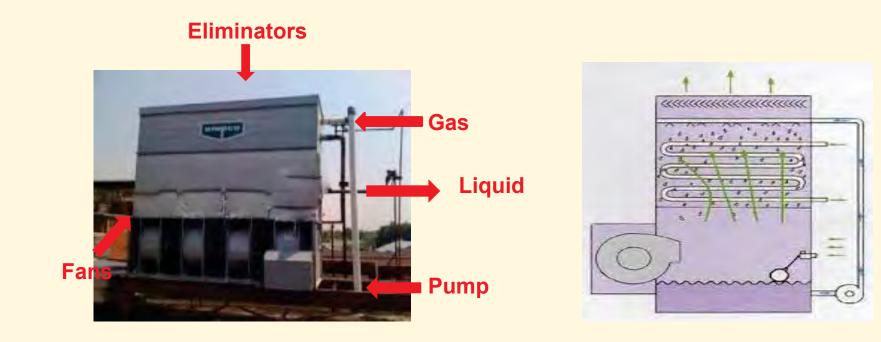
Types of Condensers

Evaporative

Plate and Frame

Air Cooled

Evaporative Condenser - Forced Draft



Evaporative Condenser - Induced Draft

Evaporative Condenser - Induced Draft, Centrifugal

Heat Exchangers

Air cooling

Product Cooling

Secondary Refrigerant Cooling

Air Cooling Heat Exchangers

Ceiling Suspended Evaporators

Air Handling Unit

Bunker Coil

COMPLIANCE

Providing Solutions. Simplifying Regulation.

Product Cooling Heat Exchangers

Storage Tank/Silo

Shell and Tube

Tube and Tube

Secondary Refrigerant Cooling

Secondary Refrigerants

- Glycol
- Water
- Brine

Plate and Frame

Shell and Tube

Different Types of Liquid Feeds for Heat Exchangers

Flooded

Direct Expansion

Recirculated

Heat Exchangers Used for Oil Cooling

Shell and Tube

Shell and Plate

Important Vessel Components

King Valve

Nameplate

High Level Float

Ammonia Pumps

Valves

Isolation

Control

Pressure Relief

Pipe

Stanislaus County Ammonia Refrigeration Training Refrigeration Safety Systems

Ammonia Detection System

Ammonia Detection System

Sensor Location	Manuf.	Model	Serial Number	Туре	Alarm Level	Audible Alarm	Strobe
Machinery Room	Dräger	PointGard II		Standalone	25 ppm-low 150 ppm-high	25 ppm	Amber-low Red-high
Machinery Room	Dräger	Polytron 5200		Standalone	14,000 ppm (1.4%)	N/A	N/A
Refrigerated Areas	Dräger	Polytron 5100		Sample	25 ppm	25 ppm	No

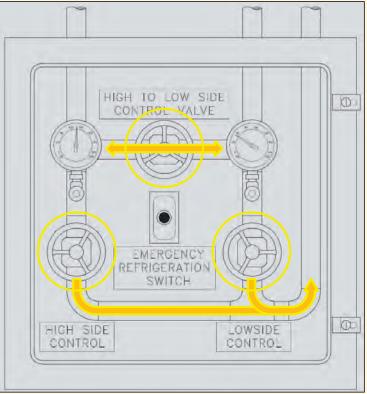
Compressor Safety Devices

- High Pressure Cutout
- Low Pressure Cutout
- Low Oil Cutout
- High Pressure Alarm
- Low Pressure Alarm
- Oil Pressure Alarm
- High Oil Temperature Cutout
- High Oil Temperature Alarm
- Low Oil Temperature Cutout
- Low Oil Temperature Alarm
- Discharge Temperature Cutout
- Discharge Temperature Alarm

High Level Float Switch

A high level float switch is wired to shut down the compressors in the event of a high level situation. This prevents liquid ammonia from entering the compressor.

Level Controller

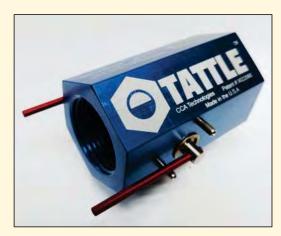

A level controller controls the liquid ammonia level in the vessel. The level controller is equipped with high level, control level, and low level set points.

Emergency Control Box

- 1. Often called a "Dump Box"
- 2. Installed for rare emergency situations

The Emergency Control Boxes were required by Fire Code prior to 2007. The control box *usually* contains three (3) valves.

- Valve #1: High Side Discharge Valve
- Valve #2: Low Side Discharge Valve
- Valve #3: High to Low Pressure Control Valve


Emergency Pressure Control System

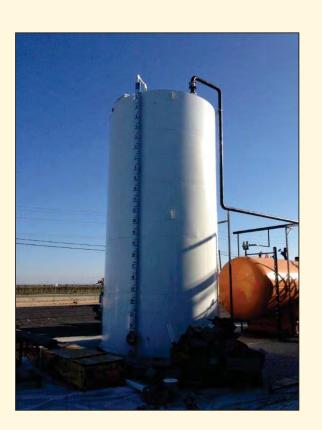
- Installations since 2007 should have and EPCS.
- Seldom used in a refrigeration system, but has been installed for rare emergency situations.
- An EPCS is activated automatically, whereas an ECB can only be activated manually.
- An ECB includes a provision for manually discharging the refrigeration system. An EPCS has no such provision.

Relief Vent Indicators

Computer Control System

COMPLIANCE

Switch and Light Panel


Providing Solutions. Simplifying Regulation.

Diffusion Tanks

- California started requiring Diffusion Tanks in 1994 with the Uniform Mechanical Code (UMC). The first California Mechanical Code (CMC) also required them in 1998.
- 2016 CMC (effective Jan. 1, 2017) removed all references to diffusion tanks.
- "Era of Diffusion Tanks" 1994-2016.

Main Liquid Feed Shut-Off Valve (King Valve)

- The high pressure receiver is equipped with a main liquid feed shut-off valve (king valve)
- It should be clearly labeled and can be used to stop the flow of ammonia throughout the system.

COMPLIANCE

Providing Solutions. Simplifying Regulation.

Emergency Refrigeration Switch

Emergency Eyewash and Shower Station

Overview of RAGAGEP

Peter Thomas, P.E., CSP – Resource Compliance, Inc.

PSM RAGAGEP References

Title 29 §1910.119(d)(3)(ii) Process Safety Information

 The employer shall document that equipment complies with <u>recognized and</u> <u>generally accepted good engineering practices</u>.

Title 29 §1910.119(j)(4)(ii) Mechanical Integrity

 Inspection and testing procedures shall follow <u>recognized and generally</u> <u>accepted good engineering practices</u>.

Title 29 §1910.119(j)(4)(iii) Mechanical Integrity

 The frequency of inspections and tests of process equipment shall be consistent with applicable manufacturers' recommendations and <u>good</u> <u>engineering practices</u>, and more frequently if determined to be necessary by prior operating experience.

RAGAGEP Citations

ABATEMENT DOCUMENTATION REQUIRED FOR THIS ITEM

Date By Which Violation Must be Abated: Proposed Penalty:

29 CFR 1910.119(d)(3)(ii): The employer did not document that equipment complies with recognized and generally accepted good engineering practices (RAGAGEP's). On or about document that is complied with recognized and generally accepted good engineering practices (RAGAGEP) exposing employees to the hazards of inhalation of toxic ammonia and/or fire/explosion in the following instances, see A through E:

A. The employer failed to document compliance with RAGAGEP, such as IIAR Bulletin 114 "Identification of Ammonia Refrigeration Piping and System Components" Section 4.1 "Piping Markers" and Section 5.0 (a-d) "Marker Location", March 2014, as the employer failed to mark and/or label ammonia refrigeration equipment, including:

1. Engine Room 5, Evaporating Condenser, tower EC-1

Citation 1 Item 2 Type of Violation: Serious

- 2. Engine Room 6, Evaporating Condenser, tower EC-2
- 3. Engine Room 7, Evaporating Condenser, towers EC-1 and EC-2
- 4. Engine Room 8, Evaporating Condenser, towers EC-1, EC-2 and EC-3
- 5. Engine Room 11, Evaporating Condenser, tower EC-1, EC-2 and EC-3

B. Failure to document compliance with RAGAGEP, such as IIAR Bulletin 110 "Guidelines for: Startup, Inspection and Maintenance of Ammonia Mechanical Refrigerating Systems" Section 6.6 Valves and Sensing Devices Subsection 6.6.1 Shut-off Valves, as the employer failed to change out ammonia refrigeration system safety relief valves prior to their 5 year due dates from the date of installation, including:

1. Engine Room 6, Heat Exchangers 1, 2 and 3. These are dual relief systems using Hansen Valves.

IIAR Literature - Bulletins

IIAR Bulletin No. 110 §6.4.2 [emphasis mine]:

The system <u>should</u> be checked regularly for the presence of noncondensable gases which <u>should</u> be purged as necessary from the receiver(s) and/or condenser(s), <u>preferably</u> into a noncondensable gas remover or purger but <u>alternatively</u> into water. Where an automatic purger is fitted, its correct operation <u>should</u> be monitored. If there is a large accumulation of noncondensable gases the reason <u>should</u> be investigated and the cause <u>should</u> be corrected.

IIAR Suite of Standards

- ANSI/IIAR 1 Definitions and Terminology Used in IIAR Standards
- **ANSI/IIAR 2** Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems
- ANSI/IIAR 3 Ammonia Refrigeration Valves
- **ANSI/IIAR 4** Installation of Closed-Circuit Ammonia Mechanical Refrigeration Systems
- **ANSI/IIAR 5** Start-up and Commissioning of Closed-Circuit Ammonia Refrigeration Systems
- IIAR 6 Standard for Inspection, Testing, and Maintenance of Safe Closed-Circuit Ammonia Refrigeration Systems
- ANSI/IIAR 7 Developing Operating Procedures for Closed-Circuit Ammonia Mechanical Refrigerating Systems
- ANSI/IIAR 8 Decommissioning of Closed-Circuit Ammonia Mechanical Refrigeration Systems
- **IIAR 9** RAGAGEP Standard

IIAR Bulletins Currently in Publication

Bulletin No. 114 March 2014	Bulletin No. 109 10/57	Bulletin No. 110 293
<u>Guidelines for:</u> Identification of Ammonia Refrigeration Piping and System Components	<u>Guidelines for:</u> IIAR Minimum Safety Criteria for a Safe Ammonia Refrigeration System	<u>Guidelines for:</u> Start-up, Inspection and Maintenance of Ammonia Mechanical Refrigerating Systems
International Institute of Ammonia Retrigeration	International Institute of Amnonia Refrigeration	International Institute of Ammonia Refrigeration

IIAR Standard 2

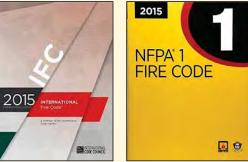
ANSI/IIAR 2 Standard for Safe Design of Closed-Circuit Ammonia

IIAR 2 vs. ASHRAE 15

COMPLIANCE

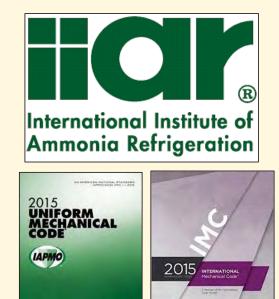
Other RAGAGEP Documents

- IIAR Bulletin No. 114 Guidelines for: Identification of Ammonia Refrigeration Piping and System Components
- International Mechanical/Fire Code
- ASME B31.5 Refrigeration Piping and Heat Transfer Components
- ASME Boiler and Pressure Vessel Code Section VIII Rules for the Construction of Pressure Vessels
- ANSI/ISEA Z358.1-2014 Emergency Eyewash and Shower Equipment


Providing Solutions. Simplifying Regulation.

IIAR and Model Codes

- 2015 IFC §606.12.1.1 Ammonia refrigeration. Refrigeration systems using ammonia refrigerant and the buildings in which such systems are installed shall comply with IIAR-2 for system design and installation and IIAR-7 for operating procedures.
- 2015 NFPA 1 §53.1.3 Reference Codes and Standards. Refrigeration systems shall be in accordance with ASHRAE 15 and the mechanical code. Refrigeration systems using ammonia as a refrigerant shall also comply with ANSI/IIAR 2, Standard for Equipment, Design and Installation of Closed-Circuit Ammonia Mechanical Refrigerating Systems.



IIAR and Model Codes

 2015 UMC §1102.1 General. Refrigeration systems shall comply with this chapter and ASHRAE 15.
 Exception: Ammonia refrigeration systems

shall comply with **IIAR 2**, **IIAR 3**, and **IIAR 5**.

 2015 IMC §1101.6 General. Refrigeration systems shall comply with the requirements of this code and, except as modified by this code, ASHRAE 15. Ammonia-refrigerating systems shall comply with this code and, except as modified by this code, ASHRAE 15 and IIAR 2.

🐨 (#) 😤 maa 🕾 (#) 🍈 🤤

IIAR and Model Codes

 NFPA 70-2017 §505.5 Refrigerant machinery rooms that contain ammonia refrigeration systems and are equipped with adequate mechanical ventilation that operates continuously or is initiated by a detection system at a concentration not exceeding 150 ppm shall be permitted to be classified as "unclassified" locations. Informational Note: For further information regarding classification and ventilation of areas involving closed-circuit ammonia refrigeration systems, see ANSI/ASHRAE 15-2013, Safety Standard for Refrigeration Systems, and ANSI/IIAR 2-2014, Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems.

Conflicts in RAGAGEP

Maximum Length of Relief Valve
 Discharge Piping

Conflicts in RAGAGEP

Maximum Length of Relief Valve Discharge Piping

2012 UMC: $L = \frac{9P^2d^5}{16C^2}$

VS.

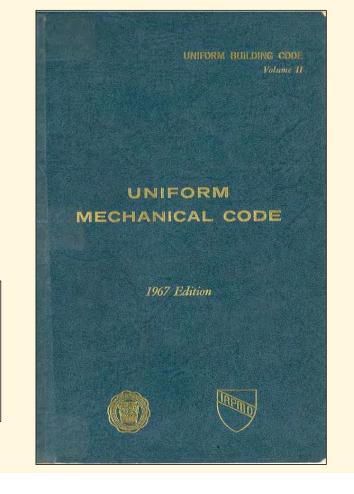
2012 IMC:
$$L = \frac{0.2146d^5(P_0^2 - P_2^2)}{fC_r^2} - \frac{d \times ln(P_0/P_2)}{6f}$$

Conflicts in RAGAGEP

Relief Valve Discharge Termination

Grandfathering

Scenario:

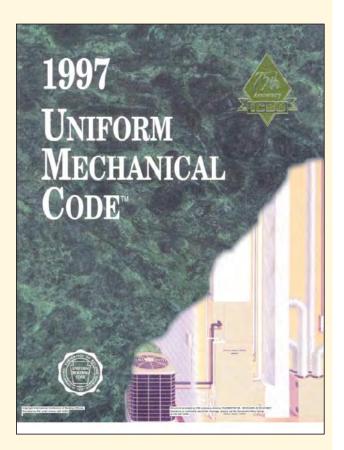

• Cold Storage Facility was built in 1969 in accordance with the 1967 UMC.

U.M.C. STANDARD 15-1-67

UNIFORM MECHANICAL CODE

UNIFORM MECHANICAL CODE STANDARD NO. 15-1-67

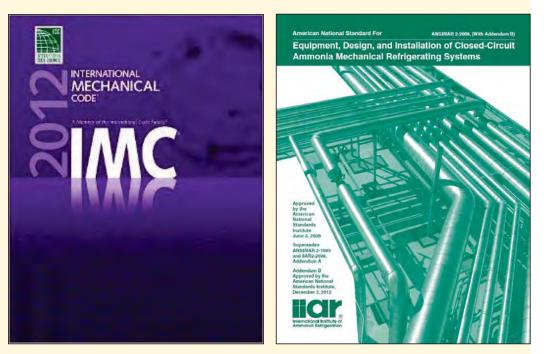
MECHANICAL REFRIGERATION Based on Standard B9.1-1964 of the United States of America Standards Institute See Section 1501, Uniform Mechanical Code



Grandfathering

Scenario:

- In 1998, modifications were made to the machinery room
 - New compressor installed
 - AHJ required ventilation and detection to be upgraded
 - All changes performed in accordance with 1997 UMC



Grandfathering

Scenario:

- In 2014, facility hired a contractor to construct a new cold storage room
 - No machinery room modifications required
 - New room must comply with
 2012 IMC and ANSI/IIAR 2-2008
 Addendum B
 - Facility elected to upgrade detection for entire facility to comply with 2012 IMC

Grandfathering

What RAGAGEP is applicable at the facility?

Consideration of New RAGAGEPs

When a new code/standard is released, what do I do?

- Role of Process Safety Information
 - Title 29 CFR §1910.119(d)(3)(ii) The owner or operator shall document that equipment complies with recognized and generally accepted good engineering practices.

Addressing New Codes/Standards

When a new code/standard is released, what do I do?

• Role of PHA

What If	Scenarios	Consequences	Severity	Likelihood	Risk Rankings	Safeguards
1: What if the equipment or associated components is damaged by nearby activity?	A forklift driver accidentally hits this piece of equipment.	1. Death 2. Injury 3. Low pressure liquid ammonia release 4, Reactive maintenance	4	1		 The flooded accumulators are located behind bunker walls which provide some protection from forklift impact. Facility forklift drivers have been trained to take extra care when driving around the refrigeration equipment. The flooded accumulators are located on the roof which is inaccessible to vehicle traffic.

Addressing New Codes/Standards

When a new RAGAGEP is released, what do I do?

- Role of Mechanical Integrity
 - Title 29 CFR §1910.119(j)(4)(ii) Inspection and testing procedures shall follow recognized and generally accepted good engineering practices.

Ammonia Detection and Ventilation

Jennifer Montee – Resource Compliance, Inc.

Does your facility.....

Have ammonia detection?

Have machinery room ventilation?

Are they tied together?

Ammonia Detection

- Level 1 Where ammonia equipment is installed.
- Level 2 Where packaged systems are located indoors and outside of a machinery room.
- Level 3 With indoor pits or locations that require emergency ventilation
- Machinery Rooms Enclosed space containing refrigeration equipment.

Ammonia Detection – Level 1

- 1. At least one ammonia detector shall be provided in the room or area.
- The detector shall activate an alarm that reports to a monitored location so that corrective action can be taken at an indicated concentration of <u>25 ppm</u> or higher.

[ANSI/IIAR 2-2014 §17.7.1]

Ammonia Detection – Level 2

- 1. Must meet all Level 1 Detection requirements
- Audible and visual alarms shall be provided inside the room to warn that, when the alarm has activated, access to the room is restricted to authorized personnel and emergency responders.
 [ANSI/IIAR 2-2014 §17.7.2]

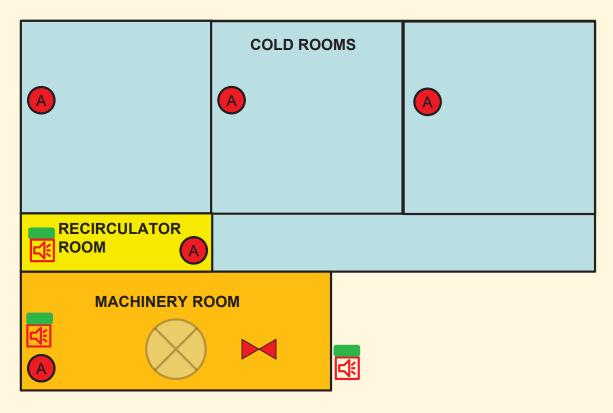
Ammonia Detection – Level 3

- 1. Must meet all Level 2 Detection requirements
- 2. Additional audible and visual alarms shall be located outside of each entrance to the machinery room.
- 3. Upon activation of the alarm, control valves feeding liquid and hot gas to equipment in the affected area shall be closed. Refrigerant pumps, nonemergency fans, or other motors that are part of the ammonia refrigeration equipment in the room shall be de-energized.
- 4. Upon activation of the alarm, emergency exhaust systems, where required, shall be activated

[ANSI/IIAR 2-2014 §17.7.3]

Ammonia Detection – Machinery Rooms

- Variation of Level 3
- At least one ammonia detector inside the room
- The detector shall activate an alarm that reports to a monitored location so that corrective action can be taken at an indicated concentration of <u>25</u> <u>ppm</u> or higher.
- Audible and visual alarms shall be provided inside the room to warn that access to the room is restricted to authorized personnel and emergency responders when the alarm has activated. Additional audible and visual alarms shall be located outside of each entrance to the machinery room.
 [ANSI/IIAR 2-2014 §6.13.1]


Ammonia Detection – Machinery Rooms

- Detection of ammonia concentrations less than <u>25 ppm</u> requires no alarm.
- Detection of <u>150 ppm</u> must activate emergency ventilation with manual reset required.
- Detection of <u>40,000 ppm</u> or vapor detector's upper limit must cause the following equipment to automatically de-energize:
 - Refrigerant compressors.
 - Refrigerant pumps.
 - Normally closed automatic refrigerant valves that are not part of an emergency control system

[ANSI/IIAR 2-2014 §6.13.2]

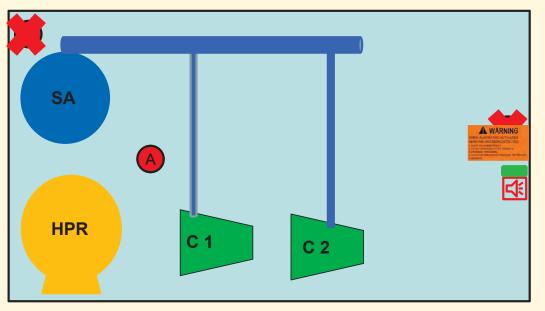
Ammonia Detection Example

MACHINERY

25 PPM 150 PPM 40,000 PPM

COMPLIANCE

Ammonia Detection



Providing Solutions. Simplifying Regulation.

Ammonia Detection – Other Requirements

MACHINERY ROOM - ELEVATION VIEW

- LOCATED WHERE A LEAK IS MOST LIKELY TO OCCUR
- LOCATED WHERE THE SENSOR CAN BE SERVICED
- SIGNAGE
- TESTED PER MANUFACTURER'S
 RECOMMENDATION
- DEDICATED POWER CIRCUIT
- FAILURE OF DETECTION

Ammonia Detection – Other Requirements

• A means shall be provided for monitoring the concentration of an ammonia release in the event of a power failure.

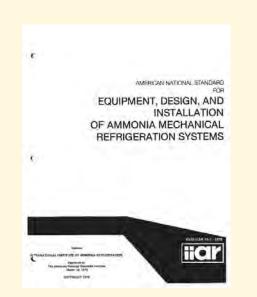
[ANSI/IIAR 2-2014 §16.1.4]

Does your facility.....

✓ Have ammonia detection?

Have machinery room ventilation?

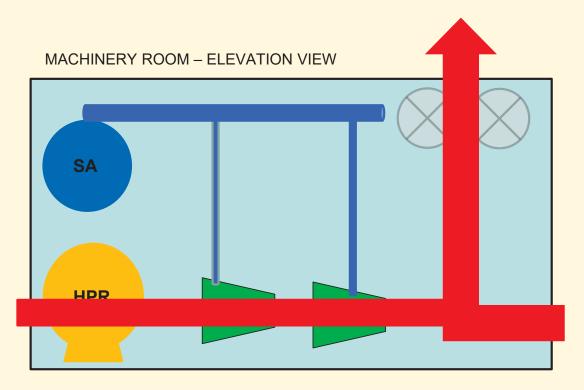
Are they tied together?



Machinery Room Ventilation

- 1. Emergency Ventilation
- 2. Temperature Control

Are all machinery rooms required to have ventilation?


 Machinery room ventilation is required per IIAR 2 (1974, 1978, 1984, 1999, 2008, 2014)

The room shall be provided with an independent mechanical ventilation system actuated automatically by vapor detector(s) when concentration of ammonia in the room exceeds 40,000 parts per million...[ANSI/IIAR 74-2 - 1978 §4.3.3.2]

Machinery Room Ventilation

- EMERGENCY VENTILATION ACTIVATED
 WHEN 150 PPM OF AMMONIA IS DETECTED
- TEMPERATURE CONTROL VENTILATION ACTIVATED BEFORE 104°F
- MUST NOT SHORT CIRCUIT
- CLEARLY IDENTIFIED AUTO/ON SWITCH OUTSIDE PRIMARY ENTRANACE
- POWERED INDEPENDENTLY OF EQUIPMENT AND SHUT DOWN CONTROLS
- POWER FAILURE TO SIGNAL A MONITORED LOCATION

Exhaust Fan Requirements

- Ducts must serve only the machinery room
- Must exhaust outdoors no fewer than 20 ft from a property line
- Minimum discharge velocity of 2,500 ft/min
- Fan blades must be nonsparking
- Fans must be of the totally enclosed type

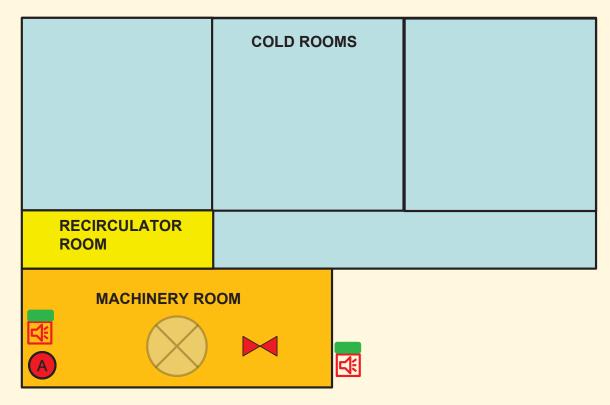
Inlet Air Requirements

- Outside make-up air shall be provided and must maintain a negative pressure in the room. Pressure shall not exceed 0.25 inches water column
- Make-up air positioned to avoid short-circuiting
- Make-up air openings shall be covered with not less than ¼" mesh
- Intakes shall draw uncontaminated air
- Intakes for make-up shall serve only the machinery room
- Motorized louvers or dampers, where utilized, shall fail open
- Where direct opening are not provided, make-up air shall be provided by fans

Ventilation Additional Requirements

- Testing Schedule. A schedule for testing ammonia detectors and alarms shall be established based on manufacturers' recommendations, unless modified based on documented experience.
- Minimum Test Frequency. Where manufacturers' recommendations are not provided, ammonia detectors and alarms shall be tested at least annually.

[ANSI/IIAR 2-2014 §17.3]


Does your facility....

- ✓ Have ammonia detection?
- Have machinery room ventilation?

Are they tied together?

Emergency Ventilation and Ammonia Detection

25 PPM 150 PPM 40,000 PPM

Does your facility....

- ✓ Have ammonia detection?
- ✓ Have machinery room ventilation?

Arathenneigediedgethether?

RAGAGEP: System Identification

Uriah Donaldson, OHST – Process Safety Consultant

Polling Question

Which pipe is the ammonia liquid?

Overview of this Talk

- 1. Pipe Labeling
- 2. Component Labeling
- 3. Valve Tagging
- 4. System Signage

Pipe Labeling

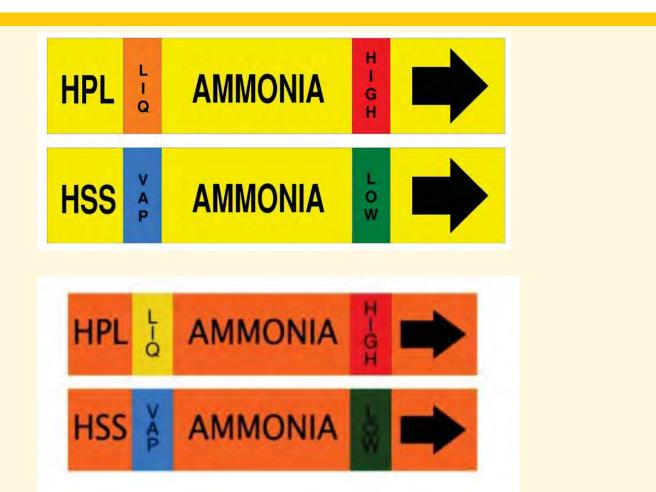
Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems

Pipe Labeling

- 1. "AMMONIA"
- 2. Physical state of ammonia
- 3. Relative pressure (high or low)
- 4. Pipe service (HPL, CD, HSS)
- 5. Direction of flow

Bulletin No. 114 March 2014

Guidelines for:


Identification of Ammonia Refrigeration Piping and System Components

Pipe Labeling

- 1. Marker body in SAFETY ORANGE with the word AMMONIA printed in black
- 2. Physical state of ammonia
- 3. Relative pressure (high or low)
- 4. Pipe service (HPL, CD, HSS)
- 5. Direction of flow

Bulletin No. 114 March 2014

Guidelines for:

Identification of Ammonia Refrigeration Piping and System Components

Pipe Labeling - Location

- 1. Before and after a change in direction
- 2. Before and after pipe penetrations
- 3. Maximum spacing of 40' on horizontal or vertical pipe runs
- 4. At least one on the piping in every area through which the refrigeration piping passes

Bulletin No. 114 March 2014

Guidelines for:

Identification of Ammonia Refrigeration Piping and System Components

Pipe Coloring – Q&A

Q: Do I have to have a pipe color code?

A: No. Pipes can be painted the same color.

Bulletin No. 114 March 2014

Guidelines for:

Identification of Ammonia Refrigeration Piping and System Components

Pipe Coloring – Q&A

Q: Do I have to follow IIAR Bulletin 114's Color Scheme?

A: No. Facilities may select an alternate color scheme.... The scheme should be consistent through the facility and a legend posted.

Bulletin No. 114 March 2014

Guidelines for:

Identification of Ammonia Refrigeration Piping and System Components

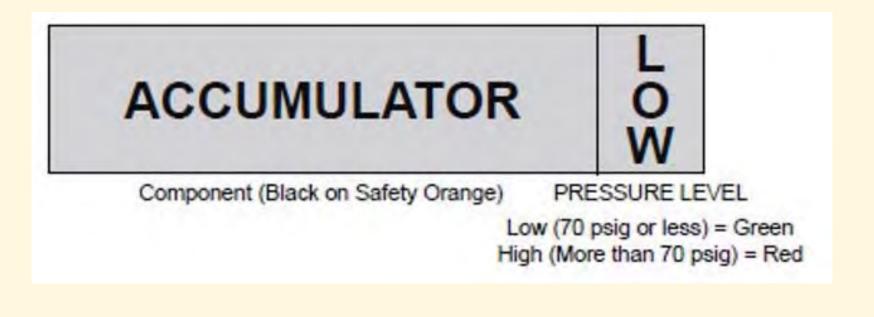
Pipe Coloring

High Pressure Liquid = Orange High Pressure Vapor = Yellow Low Pres / High Temp = Light Blue Low Pres / Low Temp = Dark Blue Relief Vent = Grey Water = Green

Component (Equipment) Labeling

Bulletin No. 114 March 2014

Guidelines for:


Identification of Ammonia Refrigeration Piping and System Components

Component Labels

- 1. Name of the Equipment
- 2. Pressure Designation
- 3. Black letters on a SAFETY
 - ORANGE background

Nameplates

"Equipment shall have a nameplate with minimum data that describes the manufacturer's information and design limits...." [ANSI/IIAR 2 -2014 §5.14.4]

Valve Tagging

Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems

Valve Tagging

"Valves required for emergency shutdown of the system shall be clearly and uniquely identified at the valve itself and in the system schematic drawings" [ANSI/IIAR 2-2014 §5.14.3]

ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 15-2016

Safety Standard for Refrigeration Systems

Approved by the ASHRAE Standards Committee on January 28, 2017; by the ASHRAE Tech Council on February 1, 2017; and by the American National Standards Institute on February 2, 2017.

This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE website (www.ashrae.org) or in paper form from the Senior Manager of Standards.

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Adanta, GA 30329-2305. E-mail: orders@ashrae.org, Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2017 ASHRAE ISSN 1041-2336

Valve Tagging

"Stop valves shall be suitably labeled if the components to and from which the valve regulates flow are not in view at the valve location" [ANSI/ASHRAE 15-2016 §9.12.6]

Valve Tag – Q&A

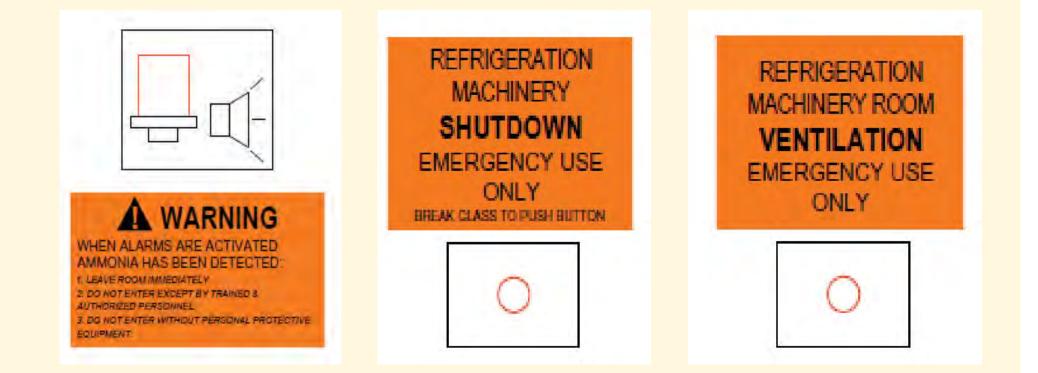
Q: What should a Valve Tag look like?

A: In general, a valve tag should correspond to the system's P&IDs.

A valve tag should be helpful.

System Signage

Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems

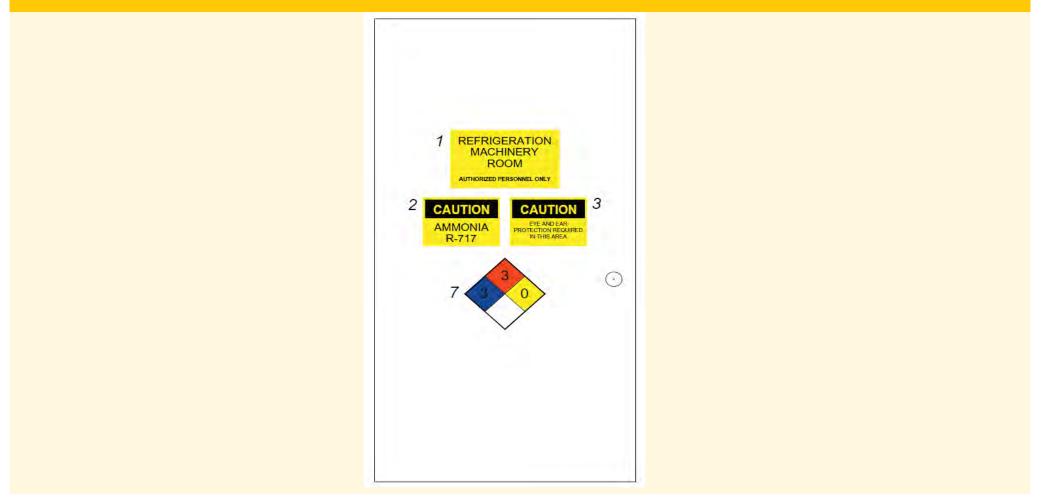


Alarms

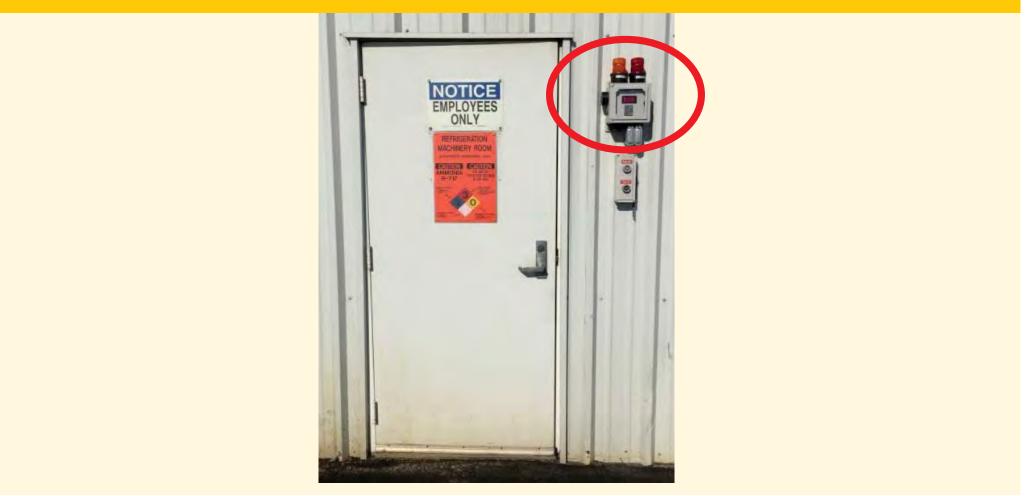
"Ammonia leak detection alarms shall be identified by signage adjacent to visual and audible alarm devices" [§17.6]

"The meaning of each alarm shall be clearly marked by signage near the visual and audible alarm" [§13.2.4.1]

Standard for Safe Design of Closed-Circuit Ammonia Refrigeration Systems



Machinery Rooms


"Buildings and facilities with refrigeration systems shall be provided with placards accordance with NFPA 704" [§6.15.1]

"Each machinery room entrance door shall be marked... to indicated that only authorized personnel are permitted" [§13.2.4.1]

2016 California Mechanical Code

California Code of Regulations Title 24, Part 4

California Building Standards Commission

Based on 2015 Uniform Mechanical Code®

Effective January 1, 2017 For Errata and Supplement effective dates see the History Note Appendix

Machinery Rooms

- "...There shall be a permanent sign at an approved location giving the following information:
 - 1. Name of contractor installing the equipment.
 - 2. Name and number designation of refrigerant in system.
 - 3. Pounds of refrigerant in system" [2016 CMC §1115.3]

Mechanical Integrity (MI)

By: Nate Torres – Operations Manager

Outline

- What is Mechanical Integrity?
- Purpose of Mechanical Integrity?
- Scope of Mechanical Integrity Program
- Keys to effective Mechanical Integrity Program

What is Mechanical Integrity?

An *organized* plan for performing the following activities on a refrigeration system:

1. Inspections

(Visual)

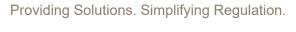
2. Testing

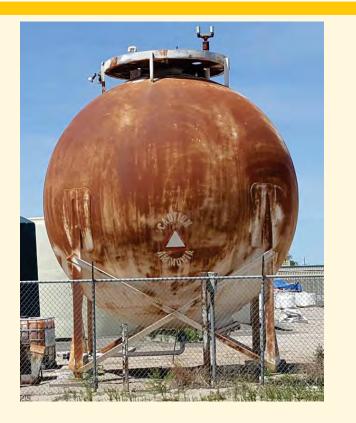
(Vibration Analysis/Safety Devices/Oil Sampling)

3. Maintenance

(Draining Oil/Exercising Valves)

Purpose


- 1. Prevent failure of system
- 2. Minimize system down time
- 3. Prevent accidental releases of ammonia
- 4. Maximize efficiency of system operation
- 5. Maximize life of system



Application

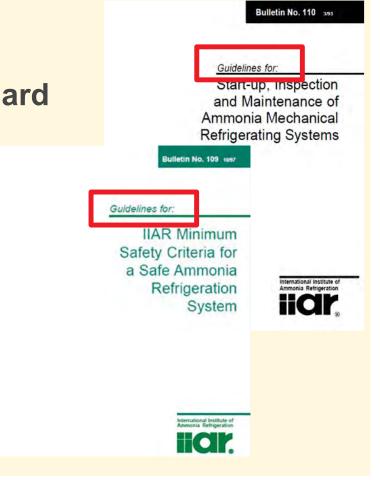
- Pressure Vessels
- Heat Exchangers
- Piping and Valves
- Compressors
- Relief System
- Emergency Shut Down System
- Pumps

* Any component of the process or associated with the process that can cause process failures or accidental releases.

Basis

RAGAGEP

- **1. Industry Standards** IIAR Bulletins and Standards
- **2. Manufacturer's Recommendation** IOM Manuals
- 3. Prior Operating Experience Historical Operating Data


Providing Solutions. Simplifying Regulation.

Industry Standards

Currently being used as Industry Standard

- IIAR Bulletin 109 & 110
 - "Guidelines"

Industry Standards

Coming Soon: Industry Standards

 IIAR 6 - <u>Inspection</u>, <u>Testing</u>, and <u>Maintenance</u> of Safe Closed-Circuit Ammonia Refrigeration Systems

"*minimum* criteria for *inspection*, *testing*, and *maintenance* of closed-circuit ammonia mechanical refrigeration systems"

IIAR 6-201x

Public Review Announcement

March 31, 2017

First (1st) Public Review of Standard BSR/IIAR 6-201x, Standard for Inspection, Testing, and Maintenance of Safe Closed-Circuit Ammonia

Refrigeration Systems

The first (1st) public review of draft standard BSR/IIAR 6-201x Standard for Inspection, Testing, and Maintenance of Safe Closed-Circuit Ammonia Refrigeration Systems is now open. The public review will be conducted from March 31, 2017 through May 15, 2017. Comments must be submitted to the International Institute of Ammonia Refrigeration (IIAR) by 5:00 pm Eastern Standard Time on May 15, 2017.

The International Institute of Ammonia Refrigeration (IIAR) invites you to make comments on the draft standard. Substantive changes resulting from this public review will also be provided for comment in a future public review if necessary.

CLICK HERE TO ACCESS COMMENT FORMS

MI Program Elements

- 1. <u>Schedule</u> of all ammonia refrigeration equipment
- 2. Frequency of inspections, tests, and maintenance
- 3. <u>Procedure</u> to perform each task
- 4. Form to document task results and identify deficiencies
- 5. <u>System</u> to ensure deficiencies tracked to completion

Example: Evaporative Condenser

1. Visual Inspections Weekly, Monthly, Annual, and 5-yr

2. Testing Weekly Water Treatment Testing

3. Maintenance Lubricate Fan Bearings Quarterly

Annual Cleaning of Water Sump and Strainers

Evaporative Condenser	Frequency	Operating Procedure	Form	
	Weekly Inspection	SOP-101	EC-W	
Vieuel Increations	Monthly Inspection	SOP-101	EC-M	
Visual Inspections	Annual Inspection	SOP-101	EC-A	
	5-year Inspection	SOP-101	EC-5yr	
Testing	Weekly Water Treatment Test	SOP-102	EC-WTT	
Maintenance	Quarterly Fan Bearings Service	SOP-103	EC-QFB	
	Annual Sump Cleaning	SOP-103	EC-ASC	

Example: Evaporative Condenser

Visual Inspections of Evaporative Condensers

Weekly Evaporative Condenser Inspection:

- Entering the evaporative condenser basin through the access-door is a permit-required confined space activity. Follow all required confined space protocols;
- Make sure that the evaporative condenser shows no signs of an ammonia leak;
- Make sure that evaporative condenser and associated water piping is free from leaks;
- Make sure that the evaporative condenser is not experiencing unusual vibration;
- Make sure that non-authorized personnel are not working on or around the evaporative condenser;
- Make sure that the evaporative condenser has safe access in the event that the evaporative condenser must be worked on;
- Visually inspect the belt(s) for proper tension;
- Make sure that the basin strainer is clear of debris;
- Visually inspect the evaporative condenser for any unusual sights, sounds, or smells. Any unusual conditions must be addressed.

Example: Evaporative Condenser

Visual Inspections of Evaporative Condensers

CHECKLIST (Weekly) Ammonia Evaporative Condenser Maintenance

See following instructions

Evaporative Condenser Description:	
Evaporative Condenser Indentification No:	
Evaporative Condenser Manufacturer:	
Evaporative Condenser Model Number:	
Evaporative Condenser Serial Number:	

Weekly Ammonia Evaporative Condenser Inspection

Date	Time	Weekly Evaporative Condenser Inspection Completed? (Yes/No)	Initials

If answer is "No" to any of the questions above, please provide explanation, corrective measure(s) and planned completion date, below, for each.

Evaporative Condenser	Frequency	Operating Procedure	Form		
	Weekly Inspection	SOP-101	EC-W		
Vieuel Increations	Monthly Inspection	SOP-101	EC-M		
Visual Inspections	Annual Inspection	SOP-101	EC-A		
	5-year Inspection	SOP-101	EC-5yr		
Testing	Weekly Water Treatment Test	SOP-102	EC-WTT		
	Quarterly Fan Bearings Service	SOP-103	EC-QFB		
Maintenance	Annual Sump Cleaning	SOP-103	EC-ASC		

	RAW	1 1	2	7	111		
SAMPLE MARKED	RAW	1	12		4	15	10
· · · · · · · · · · · · · · · · · · ·			1		-	<u>+-</u>	<u> </u>
fotal Dissolved Solids (Microsiemens)		798	829	620	779	TLIE	747
Suspended Solids (Appearance)		11.10	1001	Carl.	1477	1 7.00	170
pH Value		88.81	8.90	VVI	293	2019	12117
Total Hardness (CaCO_)		230	120	1125	212	200	ant
Calcium Hardness (CaCO,)			200	122	- (/A_/	1 - all	1000
Magnesium Hardness (CaCO.)		-					
Sodium (Na)							
Silica (SiO_)			1				
"P" Alkalinity (CaCO ₂)		225	—				
"M" Alkalinity (CaCO ₃)		ara m	250	200	774	275	200
"OH" Alkalinity (CaCO,) / as "OH"		200.0	10.202	2-121.2	de de la contra de	Carl Carl	the state of the s
Chlorides (C1)							
Phosphate (PO_)		15	20	20	15	15	15
Suffite (SO ₃)		1.2	2		(<u> </u>	1 -due	<u> </u>
Sulfate (SO_)					· · · · ·		
Nitrite (NO,)				-			
Nitrate (NO ₂)							
Molybdale (MC)			1.1		i	 	
Iron (Fe)							
Copper (Cu)		· ·		-		1	+
Cycles by Dissolved Solids	-					† 	
Cycles by Total Hardness				· . ·		<u> </u>	
Cycles by Calcium Hardness				-		1	
cycles by calcium naturess						t	
Cycles by Chlondes						1	
Cycles by Chlondes Cycles by Sulfate		· .					_
Cycles by Chlondes Cycles by Sulfate Cycles by Silica	· · · ·	· .					
Cycles by Calcolin Haliness Cycles by Calcolines Cycles by Sulfate Cycles by Silica Inhibitor Level Halogen (Free / Total).		.2	.3	-7	-4	02	

Evaporative Condenser	Frequency	Operating Procedure	Form		
	Weekly Inspection	SOP-101	EC-W		
Vieuel Increations	Monthly Inspection	SOP-101	EC-M		
Visual Inspections	Annual Inspection	SOP-101	EC-A		
	5-year Inspection	SOP-101	EC-5yr		
Testing	Weekly Water Treatment Test	SOP-102	EC-WTT		
	Quarterly Fan Bearings Service	SOP-103	EC-QFB		
Maintenance	Annual Sump Cleaning	SOP-103	EC-ASC		

	Toggle Sections	08/01/17					
		Documents (0)	Save	Delete	Print	Duplicate	
WO #: * ABC	WO Nam	e: * Annual Conder	iser Sump	Maintenar	псе		
Due Date			Frequ	ency			
08/01/2017			Annu	Jal			•
Туре			WO A	ssigned to			
Maintenance							
Completed Date			Comp	leted By			
Work Description							
Work Description							
R 7 U	€ ≣ ≣	E E Font F	amily ·	- Font	Sizes	•	
			arriiy	Folit	51265		
	<u>- A</u> -	<u>A</u> • ⊞ • -	-				
Clean Condenser 1 v	vater sump and strai	ners. Follow the facili	ty's Evano	rative Cond	lenser SOF	and Confined	Space Program

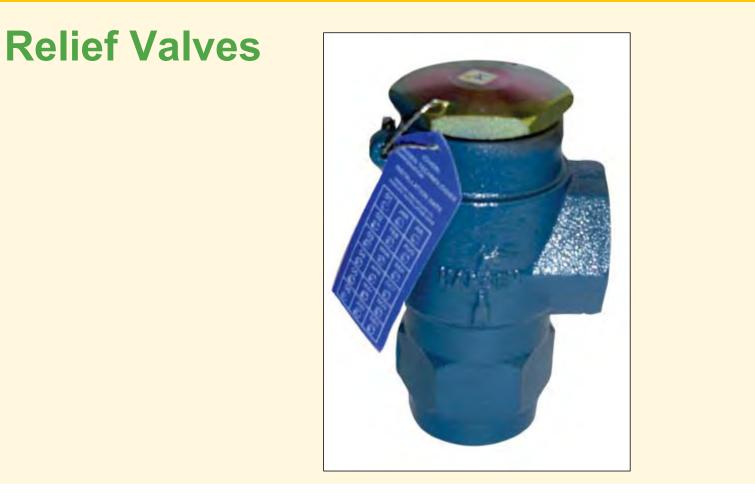
Keys to an Effective MI Program

- 1. Access to equipment
- 2. Organized Program and Recordkeeping
- 3. Adequate Budget
- 4. Sufficient Manpower
- 5. Trained and Qualified Technicians

Safety Systems: Overpressure Protection

Peter Thomas, P.E., CSP – Resource Compliance, Inc.

Pressure Limiting Devices

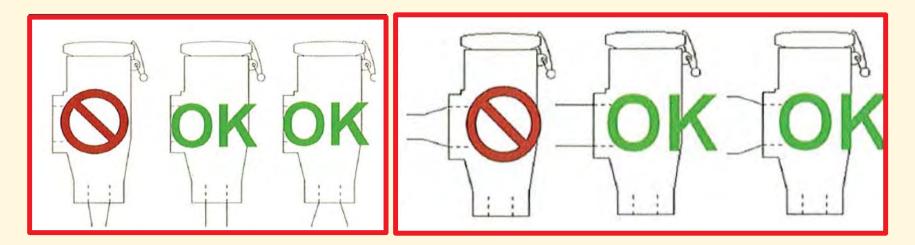


Rupture Discs

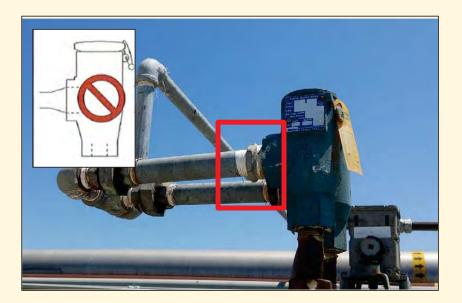
Relief Valve Installation

IN 15869 **	
H. A. PHILLIPS & CO.	
U MDMT - 0 °F AT 400 PSI	
SECONDARY MDMT - °F AT PSI EXT. MAWP PSI AT S°F	
S/N CRN HEAD SHELL SURFACE AREA SHELL SHELL	
THE THE VOL. BUS GAL. Phillips REFRIGERATION	

Relief Valve Installation


- Single vs. Dual [2013 CMC §1117.2, ANSI/IIAR 2-2014 §15.3.4-§15.3.5]
 - Pressure vessels between 3ft³ and 10ft³ are permitted to use a single relief valve
 - Pressure vessels greater than 10ft³ must use a dual relief assembly

Relief Valve Installation


• Piping [ANSI/IIAR 2-2014 §15.4]

Relief Valve Installation

• Piping [ANSI/IIAR 2-2014 §15.4]

Relief Valve Replacement

Relief Valve Termination

Ammonia Discharge
[2013 CMC §1120.1]

Relief Valve Termination

- Atmospheric Discharge [ANSI/IIAR 2-2014 §15.5.1]
 - Pipe sizing requirements [ANSI/IIAR 2-2014 §15.5.1.1.1]
 - Provision of draining moisture [ANSI/IIAR 2-2014 §15.5.1.6]
 - 20 ft from any window, ventilation intake, or personnel exit [ANSI/IIAR 2-2014 §15.5.1.2]
 - Not less than 15 feet above grade [ANSI/IIAR 2-2014 §15.5.1.2]
 - Not less than 7.25 feet above roof/platform [ANSI/IIAR 2-2014 §15.5.1.4, §15.5.1.5]
 - Arranged to avoid spraying ammonia on persons in the vicinity [ANSI/IIAR 2-2014 §15.5.1.5]

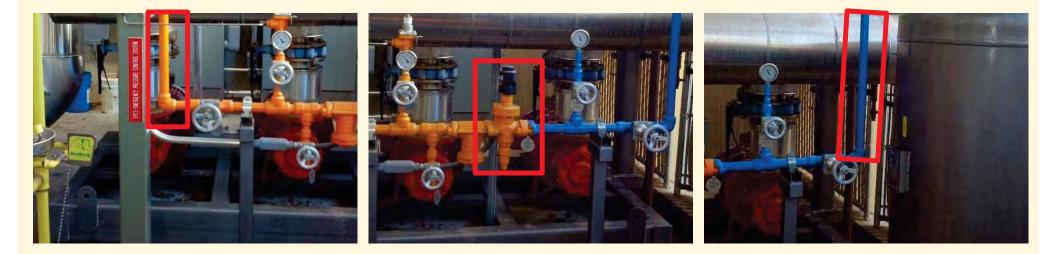
Relief Valve Termination

Atmospheric Discharge [ANSI/IIAR 2-2014 §15.5.1]

COMPLIANCE

Providing Solutions. Simplifying Regulation.

Relief Valve Discharge Piping



Set Pressure Length (psig) (ft)	Length	Nominal Pipe Size, NPS, DN										
	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	
	15	20	25	32	40	50	65	80	100	125	150	
250	2	16.5	30.4	50.7	89.9	124	207	298	463	803	1268	1830
250	3	15.5	28.8	48.6	87.2	121	203	293	457	796	1260	182
250	4	14.6	27.5	46.9	84.7	118	199	289	452	789	1251	181
250	5	13.8	26.4	45.2	82.4	115	196	284	446	782	1243	180
250	6	13.2	25.4	43.8	80.3	113	192	280	441	775	1234	179
250	8	12.2	23.6	41.3	76.6	108	186	273	431	762	1219	177
250	10	11.3	22.2	39.1	73.3	104	180	265	422	750	1203	175
250	15	9.8	19.6	35	66.7	95.4	168	250	401	721	1167	171
250	20	8.8	17.7	31.9	61.5	88.7	158	237	383	696	1135	167
250	25	8	16.3	29.5	57.5	83.3	150	226	368	673	1104	163
250	30	7.4	15.1	27.6	54.1	78.7	143	216	354	652	1076	159
250	40	6.5	13.4	24.7	48.8	71.5	131	200	330	616	1026	153
250	60	5.4	11.3	20.9	41.7	61.5	114	176	294	558	944	142
250	100	4.3	8.9	16.6	33.6	49.9	93.7	146	248	479	826	126
250	160	3.4	7.1	13.4	27.2	40.6	76.8	121	207	406	710	109
250	250	2.7	5.8	10.8	22.1	33	62.9	99.2	171	340	602	937

$$L = \frac{0.2146d^5 (P_0^2 - P_2^2)}{f C_r^2} - \frac{d \times \ln(P_0/P_2)}{6f}$$

Emergency Pressure Control System

Emergency Control Box

Emergency Pressure Control System

Relief Vent Indicators / Vent Line Sensors

RAGAGEP: System Installation

Peter Thomas, P.E., CSP – Resource Compliance, Inc.

Machinery Rooms

Machinery Room Access

COMPLIANCE

Machinery Room Access

COMPLIANCE

Providing Solutions. Simplifying Regulation.

Machinery Room Storage

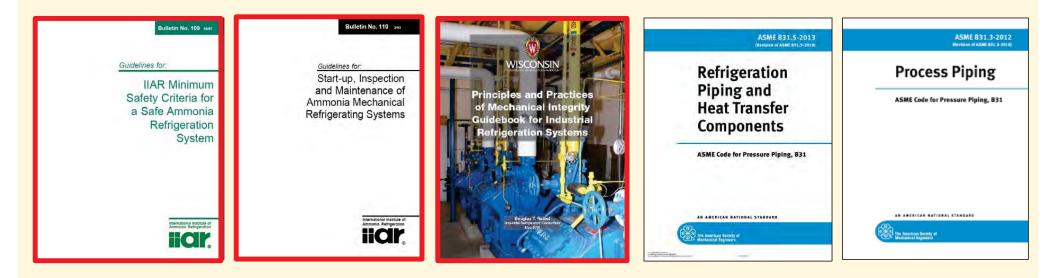
Machinery Room Open Flames

Eyewash and Safety Showers

Pipe

Insulation

Insulation


Insulation

Pipe Wall Thickness

Key RAGAGEP documents

IRC MI Guidebook

		(u	(in)						
Nominal Size (in)	Sch	Outside Diameter (in)	Nom. Wall Thickness (in)	Min Nom. Wall Thickness	Wall thickness deviation from nominal	Alert Wall Thickness	Wall thickness deviation from nominal	Replace Wall Thickness	Wall thickness deviation from nominal
ž		0		(in)	(%)	(in)	(%)	(in)	(%)
1/2"	80	0.840	0.147	0.129	(12.5)	0.080	(45.6)	0.044	(70.0)
172	160	0.040	0.294	0.257	(12.5)	0.080	(72.8)	0.080	(72.8)
3/4"	80	1.050	0.154	0.135	(12.5)	0.080	(48.1)	0.046	(70.0)
	160		0.308	0.270	(12.5)	0.080	(74.0)	0.080	(74.0)
1"	80	1.315	0.179	0.157	(12.5)	0.080	(55.3)	0.054	(70.0)
1-1/4"	80	1.660	0.191	0.167	(12.5)	0.080	(58.1)	0.057	(70.0)
1-1/2"	80	0.200	0.200	0.175	(12.5)	0.090	(55.0)	0.060	(70.0)
2"	40	2.375	0.154	0.135	(12.5)	0.100	(35.1)	0.046	(70.0)
2	80	2.375	0.218	0.191	(12.5)	0.100	(54.1)	0.065	(70.0)
2-1/2"	40	2.875	0.203	0.178	(12.5)	0.100	(50.7)	0.061	(70.0)
3"	40	3.500	0.216	0.189	(12.5)	0.110	(49.1)	0.065	(70.0)
4"	40	4.500	0.237	0.207	(12.5)	0.120	(49.4)	0.071	(70.0)
5"	40	5.563	0.258	0.226	(12.5)	0.120	(53.5)	0.077	(70.0)
6"	40	6.325	0.280	0.245	(12.5)	0.130	(53.6)	0.084	(70.0)
8"	40	8.625	0.322	0.282	(12.5)	0.130	(59.6)		Le
10"	40	10.75	0.365	0.319	(12.5)	0.136	(62.6)	of	BL
12"	ST	12.75	0.375	0.328	(12.5)	0.162	(56.9)		ipit
14"	30	14.0	0.375	0.328	(12.5)	0.178	(52.6)	atic	y p n p
16"	30	16.0	0.375	0.328	(12.5)	0.203	(45.9)	Requires evaluation minimum	thickess to satisfy piping design pressure
18"	ST	18.0	0.375	0.328	(12.5)	0.228	(39.1)	Reve	sai

Table 4-6: Piping inspection concern level summary for given values of wall thickness, t.

Level	Criteria	Flag	Action Required/Comments	Reference
1	$t \leq 0.3 * t_{point}$	•	Piping at this wall thickness must be repaired or replaced unless an engineering analysis shows it is fit for continued operation. If the engineering analysis concludes that the piping is fit for continued operation, all active surface corrosion must be arrested and the surface coating restored without delay.	Gerber et al (1992)
2	$0.3 * l_{non} \leq l < l_{nker}$	•	Piping below the alert wall thickness requires a more detailed engineering analysis to determine t_{min} for the portion of the piping system in question as a basis for evaluating its fitness for continued operation. If the measured wall thickness, <i>t</i> , at any location is less than the minimum allowable wall thickness ($t < t_{min}$), the pipe is not fit for continued operation and must be replaced promptly. If the pipe wall is above the minimum wall thickness, all active corrosion must be arrested/converted and the surface restored as soon as possible.	API RP 574 (2009) & ASME B31.5 (2013)
3	$t_{alant} \leq t < 0.875 * t_{non}$	0	If the measured wall thickness, t , is less than nominal minus the mill tolerance but greater than t_{awn} the piping can continue operation. As the wall thickness approaches t_{awn} consider increased inspection frequency.	API RP 574 (2009) & ASME B31.5 (2013)
4	$t \ge 0.875 * t_{max}$	•	Piping at this wall thickness is fit for continued operation. Ensure that any active surface corrosion is arrested and the surface restored in a timely manner.	Original design per ASME B31.5 (2013)

Pipe Supports

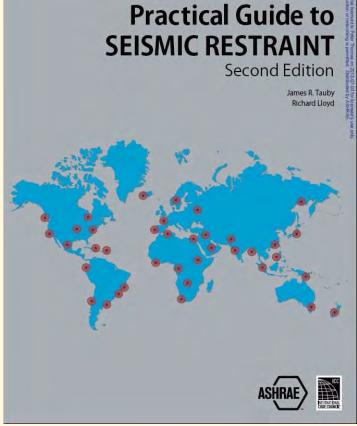
Pipe Supports

Providing Solutions. Simplifying Regulation.

Pipe Supports

• ANSI/IIAR 2-2014 Appendix F

Nominal Pipe Size	Maximum Span	Minimum Rod Diameter		
Up to 1	7	1/8		
1-¼ - 1-1/2	9	3/8		
2	10	3/8		
2-1/2	10	1/2		
3	12	1/2		
4	14	5/8		
5	16	5/8		
6	17	3/4		
8	19	7/8		
10	22	7/8		
12	23	7/8		



Equipment Anchors

Supports and Anchorage

Trapeze Supports

Safe Access

Service Provision

Maintenance Accommodation

- Equipment shall be accessible for maintenance, as required by the Mechanical Code. [ANSI/IIAR 2-2014 §5.12.1]
- Shell and Tube Condenser [ANSI/IIAR 2-2014 §10.4.4]
- Plate Heat Exchanger Condenser [ANSI/IIAR 2-2014 §10.5.4]
- Double-Pipe Condenser [ANSI/IIAR 2-2014 §10.6.4.1]
- Shell and Tube Evaporator [ANSI/IIAR 2-2014 §11.3.1.4, ANSI/IIAR 2-2014 §11.3.2.4]
- Plate Heat Exchanger Evaporator [ANSI/IIAR 2-2014 §11.4.4]
- Scraped Surface Heat Exchanger [ANSI/IIAR 2-2014 §11.5.4]
- Pressure Vessels [ANSI/IIAR 2-2014 §12.6.1]

Safe Access

Valves

- Stop valves shall be readily accessible from the machinery room floor or a level platform [2013 CMC §1112.3]
- Manually operated valves that are inaccessible from floor level shall be operable from portable platforms, fixed platforms, ladders, or shall be chain operated. [ANSI/IIAR 2-2014 §6.3.3.1]
- Manually operated isolation valves identified as being part of the system emergency shutdown procedure shall be directly operable from the floor or chain operated from a permanent work surface. [ANSI/IIAR 2-2014 §6.3.3.2, §13.3.7]
- Relief device arrangements shall be configured to allow access for inspection, maintenance, and repair. [ANSI/IIAR 2-2014 §15.2.3]
- Similar requirement dating back to 1978

Questions?

Stanislaus County Ammonia Refrigeration Training Training Your Employees on the Ammonia System

Takeaways

- Understand the training requirements for the ammonia system
- Strategies to develop an *internal* training program
- Available resources

Training - Regulation Summary

Applicable employees must be trained at least every three (3) years (or when a change occurs) in the:

(1) Process (2) Procedures (Operating & Maintenance)
 (3) Response

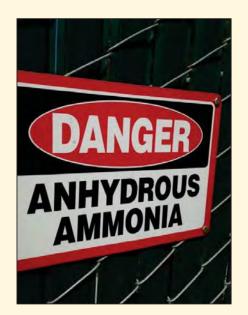
Every three (3) years in three (3) categories: Process, Procedures, Response

Training Requirements

All Facility Employees

- Chemical Safety & Awareness (ammonia safety)
- Emergency Response

Facility Operator/Maintenance


- Process Overview/Safety Information
- Operating Procedures
 - Operating the System
 - Mechanical Integrity/Maintenance

- Initial & refresher training
- Competency verification

_	Ron Bryan	_
	ted the 5-hour Ammonia Awaren 10, 2015 at California Controlled	
Workshop included the fe	blowing sessions:	
Ammonia Awareness Condenser Maintenance Control Valves Daily Checklist	Refrigeration Cycle Temperature Probe Calibration SOP's Fit For Your Facility Non-Destructive Testing	PSM Compliance Oil Draining Relief Valves System Balance Demo
CAL CALIFORN	A	Pite 11
GRI ATMOS	PHERE	Peter Thomas - Engineer
and series	URCE	

Ammonia Awareness & Emergency Response Training

Properties of Ammonia

- Color: Colorless gas and liquid
- Boiling Point: -28.1°F
- Vapor Pressure: 93 psig @ 60°F
- Vapor Density: 0.60
- Solubility: Highly Soluble in Water (high affinity)
- Smell: (Most recognizable) Extremely pungent, irritating odor

Exposure Limits

- Permissible Exposure Limit (PEL): 25 ppm
- Short-Term Exposure Limit (STEL [15 min.]): 35 ppm
- Toxic Endpoint: 200 ppm
- Immediately Dangerous to Life or Health (IDLH): 300 ppm

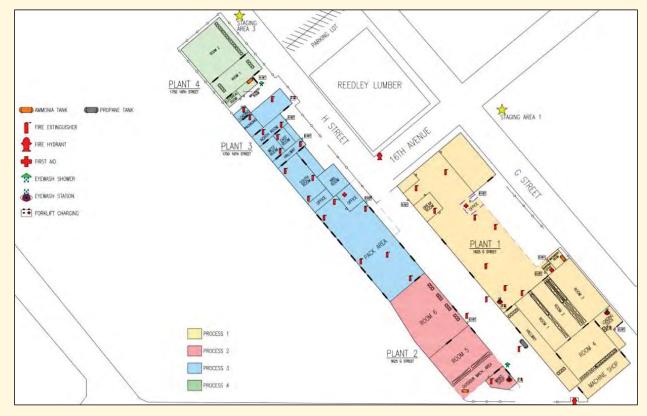
First Aid Procedures

Health Effects

Irritation, chemical burns, eye damage and fatal in high concentrations.

Inhalation - First Aid

Depending Remove from exposure area. If breathing has stopped administer artificial respiration.


Skin/Eye Contact - First Aid

Flush with water for 15 minutes and contact a physician.

Evacuation

Training Requirements

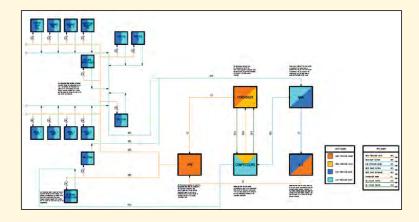
All Facility Employees

- Chemical Safety & Awareness (ammonia safety)
- Emergency Response

Facility Operator/Maintenance

- Process Overview/Safety Information
- Operating Procedures
 - Operating the System
 - Mechanical Integrity/Maintenance

- Initial & refresher training
- Competency verification


- C -	Ron Bryan	_
	ted the 5-hour Ammonia Awara 10, 2015 at California Controlled	
Workshop included the f	llowing sessions:	
Ammonia Awareness Condenser Maintenance Control Valves Daily Checklist	Refrigeration Cycle Temperature Probe Calibration SOPs Fit For Your Facility Non-Destructive Testing	PSM Compliance Oli Draining Relief Valves System Balance Demo
CAL CALIFORN CONTROL ATMOS	A LED VHERE	Pith Sh_ Peter Thomas - Engineer
COMPLI	URCE	Certificate No. 2753

Process Safety Information

PSI Elements

- Safety Data Sheet (SDS)
- Block Flow Diagram (BFD)
- Process Chemistry
- Maximum Intended Inventory
- Safe Operating Limits & Consequences of Deviation
- Materials of Construction
- Piping & Instrumentation Diagrams (P&IDs)

Process Safety Information

PSI Elements

- Electrical and Safety Classifications
- Relief System Design
- Ventilation System Design
- Design Codes and Standards
- Material and Energy Balances
- Safety Systems
- Electrical Supply and Distribution Systems

Training Requirements

All Facility Employees

- Chemical Safety & Awareness (ammonia safety)
- Emergency Response

Facility Operator/Maintenance

- Process Overview/Safety Information
- Operating Procedures
 - Operating the System
 - Mechanical Integrity/Maintenance

- Initial & refresher training
- Competency verification

Operators must...

- Know the location of the Operating Procedures
- Know how to navigate and reference the Operating Procedures
- Know the hazards of the process
- Be competent in the Operating Procedures
- '...each employee involved in operating a process has received and understood the training.'

Sample Compressor Operating Procedure – Normal Operations

Normal Operations

- 1. During normal operations, the compressor will automatically load and unload based on suction pressure.
- During low load conditions, the compressor may enter 'Standby' mode until the system load requires it to operate at some capacity.
- Visually inspect the compressor at least twice per shift for any problems such as vibration, excessive pressure, ammonia leaks, or lubrication oil leaks.
- 4. The following minimum operating parameters must be checked to ensure that they are within the desired range:
 - a. Suction Pressure
 - b. Discharge Pressure
 - c. Oil Pressure
 - d. Oil Temperature
- 5. Complete the daily log as required by the facility Mechanical Integrity program.

How do you know your operator is competent in the procedure?

"Competeray istking"

S	OP Quiz - Sample
* Re	quired
Em	nployee Name *
You	Ir answer
	nen truck off-loading, what do you do after starting the appoint mpressor? *
0	Slowly open the liquid valve on the trailer.
0	Monitor pressure differential between the customer equipment and the trailer.
0	Close all bleeders.
0	Monitor liquid levels and pressure until the trailer is empty or the customer equipment has reached 85% maximum capacity.
Wł	hich activity is not completed after truck off-loading? * 1 point
0	Lockout all valves on the customer equipment.
0	Return hoses to their holding cradles.

Providing Solutions. Simplifying Regulation.

Training Requirements

All Facility Employees

- Chemical Safety & Awareness (ammonia safety)
- Emergency Response

Facility Operator/Maintenance

- Process Overview/Safety Information
- Operating Procedures
 - Operating the System
 - Mechanical Integrity/Maintenance

- Initial & refresher training
- Competency verification

Mechanical Integrity/Maintenance Training

- Daily Operations Checklist
- Monthly Inspection
- Annual Inspection
- 5-Year Inspection

		Ammon	ia Refrigeration	i System			
		Date	+ 201	1.1		(1)	
		Time			- *		
Gauge Board	Suction Pressure	33 - 50 psig			- * · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	Discharge Pressure	120 -195 psig					
	Running	Yes/No					
	Run Time	Hours					
	Oil Level	Sight glass should be 1/2 full					
	Alarms	Yes/No - check microprocessor					
and a second second	Suction Temperature	19"F - 34"F					
Screw Compressor #1	Suction Pressure	33 psig - 50 psig					11
	Discharge Pressure	120 psig - 195 psig					
	Oil Temperature	120"F - 170"F		1.5.418			
	Oil Filter Pressure	60 psig - 90 psig		- to a particular second			
	Motor Amps	A					
	Slide Valve	86		ii	i. i		
	Fans Running	Yes/No			1 1		11
Condenser #1	Pump Running	Yes/No			1 1 1 1 1		11 1 1
	Belts	Too loose or too tight?			1 1		1.0 2 2 2
Liquid Recirculator	Visual Inspection	Free from unusual vibration, sounds, and smells.					
Pilot Receiver	Visual Inspection	Free from unusual vibration, sounds, and smells.		1			
Ice Generator	Visual Inspection	Free from unusual vibration, sounds, and smells.				· · · · · · · · · · · · · · · · · · ·	
		Initials		- 14 g			

Strategies to Train Employees

- Do you have someone who coordinates all training for the company?
- Setup a training schedule
- Group trainings together (ex. Chemical Awareness & Emergency Response)
- Train all employees during initial orientation
- Annual refresher built into company training program
- Test for competency

Documentation

If it wasn't documented...it didn't happen

	TRAINING FORM
Date: 5-23-16	
Description: Ammonia Ac	pareness and Emergency Response
Туре:	9
0%, Initial	Refresher
Delivery: Classroom	 On-the-job training
 Demonstration 	C Tailgate safety meeting
Competency Verification:	
 Demonstration Observation 	O Oral test Ø Discussion Written test ○ None
Who was trained:	
Employee Name	Signature
Jesus Martin	197 Das Morten
José A. Femandre 1	Juroyo Jose A. Ferrandra An
Difredo Vale	Ya Altrada Valavara
Mark Dovelley	mantade
John Dweller	allandlin
Clathe State	PATCHICK JOHNSTON
	,
	-
	1.1.1.
11011011	Ilin In Alli
Print Name	Signature
I certify that the employee(s) named in the required competency verification.	his training certification received the training described above an
-1-	Izalla DIA
0 / /	
Certifying <u>FATRIEL</u> Supervisor Print Name	JOHNSTON MELLO/MULL
Supervisor Print Name	ognature //

Useful Training Resources

- Chemical Safety Days <u>www.cvcsd.org</u> (Turlock November 2, 2017)
- Refrigerating Engineers & Technicians Association (RETA) classes and certification – <u>www.reta.com</u>
- Local RETA chapters (San Joaquin Valley)
- Sacramento Safety Day (typically April)

Useful Training Resources

- Resource Compliance Blog <u>www.resourcecompliance.com/blog</u>
- Garden City Ammonia Program (GCAP) <u>www.ammoniatraining.com</u>
- Contractor Training
- Consultants

Training - Regulation Summary

Applicable employees must be trained at least every three (3) years (or when a change occurs) in the:

(1) Process (2) Procedures (Operating & Maintenance)
 (3) Response

Every three (3) years in three (3) categories: Process, Procedures, Response