

Health and Physiology of Hazardous Chemicals Peter Thomas, P.E. | Resource Compliance

Common Chemicals in the San Joaquin Valley

Common Chemicals in the San Joaquin Valley

THE wrokes, Betrehee II, by exploring, followed by far, d the great for write al Green, are Ledelschelle est Reicht, wies zwrecht anders are zweis were klass dat bissande bisjert, was he greater datare with al data its are vertreit in there are de prinkly is the same were klass data its ander ande

	Refrigerant Characteristics										
1	10 °F Evaporator Temperature, 95 °F Condensing Temperature										
Refrigerant Evaporator Condensing Theoretical Refrigerating Mass Flow Specific CF											
	Pressure	Pressure	Discharge	Effect	Rate	volume	ton				
	(psig)	(psig)	Temperature	(BTU/lb.)	(lb./min/ton)	Vapor (Cu.					
			(°F)			ft./Ib.)					
CFC-11	23.1*	6.9	118	65.98	3.03	10.7	32.8				
CFC-12	14.6	108.3	109	48.43	4.13	1.324	5.47				
HCFC-22	32.8	181.8	145	67.74	2.9	1.129	3.33				
CFC-500	19.7	130.6	110	58.54	3.42	1.362	4.60				
HCFC-502	41.1	199.7	100	43.51	4.60	.751	3.46				
R-717	23.8	181.1	221	465.50	.43	7.304	3.14				

Uses of Sulfur Dioxide

Uses of Chlorine

Ammonia Emissions

- Values in tons/day
- Data from 2006 California Air Resources Board (ARB) statistics

Ammonia Production

Ammonia Production

 First Manufactured in Oppau, Germany in 1913

Ammonia Production

Ammonia Grades

	COMM	AGRI	REFRIG	TECH	METAL	SEMICON
Ammonia wt. %, minimum	99.5	99.7	99.95	99.98	99.995	99.999

Chlorine Production

Hazardous Reactions

• NFPA Fire Protection Guide to Hazardous Materials (2001)

Acetaldehyde Acrolein Boron Boron Bromine Caloric Acid Chlorine Chlorites Chlorisilane Chromic Anhydride Chromyl Chloride Ethylene Dichloride **Ethylene Oxide** Fluorine Gold Hexachloromelamine Hydrazide Hydrogen Bromide Hypochlorous Acid lodine

Magnesium Perchlorate Mercury Nitric Acid Trioxide Nitrogen Tetroxide Nitrogen Trifluoride Nitryl Chloride Oxygen Difluoride Monoxide Phosphorous Pentoxide Trifluoride Phosphorous Trioxide **Picric Acid** Potassium Potassium Chlorate Potassium Ferricyanide Potassium Mercuricyanide Potassium Tricyanomercurate Silver Silver Chloride Sodium Stilbene Sulfur Tellurium Trichloromelamine

Hazardous Reactions

• NFPA Fire Protection Guide to Hazardous Materials (2001)

	CAMEO Chemicals
me	Search Results
	Name contains annuonia matched 24 datacheets
ch Chemicals	1 - 20 of 24 results < Prev Next > Page 1 of 2 Go to page: Go
Search	
ly Search ch Results hemicals isolat: 0 MyChamicals ist Reactivity is Site	AMBCORLA_MILTOROUGA Addres conteste qui the attron due. Stepped as a baid aud. Fit cart sape stream, fits
	AMMONIA SOLUTIONS (CONTAINING MORE THAN 32% DUT NOT MORE THAN 50% AMMONIA) A class contents liquid conditing of amontia dialocal and and c. Contoire Is Status and marks Control and the second s
	A coldmens separate ligad studient with a sturge offer of minimum. Beth ligad and regore entreme DOI Neared Lader (Control e ALA 3 (66 win): 100 ppm CAS Number / 66-11.7 The control of Ask Industries 7072 The control of Ask Industries 7072 The control of Ask Industries Total Number / 66-11.7

Acetaldehyde Acrolein Boron Boron Bromine Caloric Acid Chlorine Chlorites Chlorisilane Chromic Anhydride Chromyl Chloride Ethylene Dichloride **Ethylene Oxide** Fluorine Gold Hexachloromelamine Hydrazide Hydrogen Bromide Hypochlorous Acid lodine

Magnesium Perchlorate Mercury Nitric Acid Trioxide Nitrogen Tetroxide Nitrogen Trifluoride Nitryl Chloride Oxygen Difluoride Monoxide Phosphorous Pentoxide Trifluoride Phosphorous Trioxide **Picric Acid** Potassium Potassium Chlorate Potassium Ferricyanide Potassium Mercuricyanide Potassium Tricyanomercurate Silver Silver Chloride Sodium Stilbene Sulfur Tellurium Trichloromelamine

Chemical / Physical Properties

- Boiling Point
- Vapor Pressure
- Vapor Density
- Solubility
- Color
- Smell

Boiling Point

- NH₃: -28.1°F
- **SO**₂: 14°F
- Cl₂: -29.27°F

Vapor Pressure

- NH₃: 93 psig @ 60°F
- **SO₂**: 47.03 psig @ 68°F
- **Cl₂**: 112.95 psia @ 77°F

Temp	Pres	sure	Temp	Pres	sure	Temp	Pres	sure	Temp	Pres	sure
°F	PSIA	PSIG	°F	PSIA	PSIG	°F	PSIA	PSIG	°F	PSIA	PSIG
-60	5.6	18.6	-14	21.4	6.7	31	61.0	46.3	76	143.0	128.3
-58	5.9	17.8	-13	22.0	7.3	32	62.3	47.6	77	145.4	130.7
-57	6.1	17.4	-12	22.6	7.9	33	63.6	48.9	78	147.9	133.2
-56	6.3	17.0	-11	23.2	8.4	34	64.9	50.2	79	150.5	135.8
-55	6.5	16.6	-10	23.7	9.0	35	66.3	51.6	80	153.0	138.3
-54	6.8	16.2	-9	24.4	9.6	36	67.6	52.9	81	155.6	140.9
-53	7.0	15.7	-8	25.0	10.3	37	69.0	54.3	82	158.3	143.6
-52	7.2	15.3	-7	25.6	10.9	38	70.4	55.7	83	161.0	146.3
-51	7.4	14.8	-6	26.3	11.6	39	71.9	57.2	84	163.7	149.0
-50	7.7	14.3	-5	26.9	12.2	40	73.3	58.6	85	166.4	151.7
-49	7.9	13.8	-4	27.6	12.9	41	74.8	60.1	86	169.2	154.5
-48	8.2	13.3	-3	28.3	13.6	42	76.3	61.6	87	172.0	157.3
-47	8.4	12.8	-2	29.0	14.3	43	77.8	63.1	88	174.8	160.1
-46	8.7	12.2	-1	29.7	15.0	44	79.4	64.7	89	177.7	163.0
-45	9.0	11.7	0	30.4	15.7	45	81.0	66.3	90	180.6	165.9
-44	9.2	11.1	1	31.2	16.5	46	82.6	67.8	91	183.6	168.9
-43	9.5	10.6	2	31.9	17.2	47	84.2	69.5	92	186.6	171.9
-42	9.8	10.0	3	32.7	18.0	48	85.8	71.1	93	189.6	174.9
-41	10.1	9.3	4	33.5	18.8	49	87.5	72.8	94	192.7	178.0
-40	10.4	8.7	5	34.3	19.6	50	89.2	74.5	95	195.8	181.1
-39	10.7	8.1	6	35.1	20.4	51	90.9	76.2	96	198.9	184.2
-38	11.0	7.4	7	35.9	21.2	52	92.7	78.0	97	202.1	187.4
-37	11.4	6.8	8	36.8	22.1	53	94.4	79.7	98	205.3	190.6
-36	11.7	6.1	9	37.6	22.9	54	96.2	81.5	99	208.6	193.9
-35	12.1	5.4	10	38.5	23.8	55	98.1	83.4	100	211.9	197.2
-34	12.4	4.7	11	39.4	24.7	56	99.9	85.2	101	215.2	200.5
-33	12.8	3.9	12	40.3	25.6	57	101.8	87.1	102	218.6	203.9
-32	13.1	3.2	13	41.2	26.5	58	103.7	89.0	103	222.0	207.3
-31	13.5	2.4	14	42.2	27.5	59	105.6	90.9	104	225.4	210.7
-30	13.9	1.6	15	43.1	28.4	60	107.6	92.9	105	228.9	214.2
-29	14.3	0.8	16	44.1	29.4	61	109.6	94.9	106	232.5	217.8
-28	14.7	0.0	17	45.1	30.4	62	111.6	96.9	107	236.0	221.3

Solubility

Solubility

Providing Solutions. Simplifying Regulation.

Color and Smell

Odor Threshold

- **NH**₃: 0.04 17 ppm
- **SO₂**: 0.1 1 ppm
- **Cl**₂: 0.002 3.5 ppm

Providing Solutions. Simplifying Regulation.

Flammable Ranges

Ammonia

- LFL: 15-16%
- UEL: 25-28%

• Sulfur Dioxide

o N/A

Chlorine

o N/A

Additional Resources

Chemical Data	isheet		Add	to MyChemicals Print
SULFUF	R DIOXIDE			INHALATION HAZARD 2
Chemical Identi	fiers Hazards Resp	onse Reco	mmendations Physical Properties F	Regulatory Information
Alternate Chem	ical Names			
Chemical T	dentifiers			
What is this info	ormation?			
CAS Number 7446-09-5	UN/NA N 1079	lumber	DOT Hazard Label Poison Gas	USCG CHRIS Cod
			Corrosive	<u> 510</u>
			Contosive	
NFPA 704			contrainte	
NFPA 704 Diamond	Hazard	Value	Description	
NFPA 704 Diamond	Hazard Health	Value 3	Description Can cause serious or permanent inj	ury.
NFPA 704 Diamond	Hazard Health	Value 3 0	Description Can cause serious or permanent inju Will not burn under typical fire cond	ury.
NFPA 704 Diamond	Hazard Health Flammability Instability	Value 3 0	Description Can cause serious or permanent inj Will not burn under typical fire cond Normally stable, even under fire con	ury. itions.

Exposure Limits

Exposure Limit	Ammonia	Chlorine	Sulfur Dioxide
PEL	25/50 ppm	0.5/1 ppm	2/5 ppm
STEL	35 ppm	1 ppm	5 ppm
Toxic Endpoint	0.14 mg/l 200 ppm	0.0087 mg/l 3 ppm	0.0078 mg/l 2.98 ppm
IDLH	300 ppm	10 ppm	100 ppm

Health Hazard Data

- Inhalation
- Absorption
 - o Skin Contact
 - o Eye Contact
- Injection
- Ingestion

Inhalation

- Remove from exposure; seek fresh air.
- Administer artificial respiration or oxygen if breathing has stopped.
- Seek medical aid.

Skin Contact

- Immediately flush with large quantities of water for at least 15 minutes. Do not remove clothing if frozen to skin.
- Seek medical aid.

Eye Contact

- Flush with large quantities of water for at least 15 minutes.
- Seek medical aid.

Ingestion

- Do not induce vomiting. Give 1–2 glasses of milk or water.
- Seek medical aid.

Acute Ammonia Exposure

• Burns to the respiratory tract

Acute Ammonia Exposure

• Dyspnea

Acute Ammonia Exposure

• Stridor

Acute Ammonia Exposure

• Chest pain

RESOURCE COMPLIANCE

Providing Solutions. Simplifying Regulation.

Acute Ammonia Exposure

• Pulmonary edema / pneumonia

Acute Ammonia Exposure

Conjunctivitis / lacrimation / corneal erosion

Providing Solutions. Simplifying Regulation.

Acute Ammonia Exposure

Severe burns First degree Epidermis burn Dermis Hypodermis Second degree burn Third degree burn *ADAM

Acute Chlorine Exposure

- Rapid heart rate
- Hypertension (high blood pressure)
- Hypotension (low blood pressure)
- Cardiovascular collapse

Thank You!