

March 10, 2016 – San Joaquin Valley RETA Meeting Refrigerant Selection

Peter Thomas, P.E., CSP – Resource Compliance, Inc.

Background and History

Simple, dangerous Compounds

Safer, more complex refrigerants

Halocarbons

Chlorofluorocarbons Hydrochlorofluorocarbons Hydrofluorocarbons

Refrigerant + Refrigerant

Azeotrope/Zeotrope

Refrigeration Selection Factors

- Saturated Operating Pressures/Temperatures
- Discharge Temperatures
- Equipment Costs
- Refrigerant Cost and Availability
- Safety
- Environmental Concerns and Regulations

Saturated Operating Pressures

Higher Cond / Lower Evap Pressures

Evaporator Pressure > Atmosphere Pressure

Refrigerant	Evap/Disch Temp (ºF)	Evap Pressure (PSIG)	Cond Pressure (PSIG)
HCFC-22	10/95	32.38	181.83
	20/85	43.29	155.94
CFC-11	10/95	3.4 inHg	6.80
	20/85	4.39 inHG	3.20
CFC-12	10/95	14.83	108.30
	20/85	21.20	91.76
CFC-500	10/95	19.70	130.50
	20/85	37.20	110.90
HCFC-502	10/95	45.90	201.50
	20/85	51.80	173.70
R-717	10/95	23.79	181.21
	20/85	33.50	151.80
R-134a	10/95	11.63	114.08
	20/85	18.65	95.53
R-507	10/95	46.30	226.06
	20/85	59.27	195.17
R-404a	10/95	43.32	220.22
	20/85	55.48	187.61

Discharge Temperature

- Heat of Compression
- Higher Discharge Temperatures cause problems and raises cost
- Reciprocating Compressors vs Screw Compressor

Refrigerant	Evap/Cond Temp (ºF)	Theoretical Discharge Temp (ºF)	Evap/Cond Temp (ºF)	Theoretical Discharge Temp (ºF)
HCFC-22	10/95	135.94	10/85	124.03
	20/95	130.34	20/85	116.48
CFC-12	10/95	108.85	10/85	98.34
	20/95	106.27	20/85	95.74
R-717	10/95	<mark>218.48</mark>	10/85	196.54
	20/95	197.04	20/85	176.17
R-134a	10/95	104.00	10/85	93.27
	20/95	104.34	20/85	93.49
R-507	10/95	104.27	10/85	93.49
	20/95	104.61	20/85	92.40
R-404a	10/95	104.21	10/85	92.20
	20/95	103.14	20/85	91.82

Equipment Cost

- Each refrigerant has a unique specific heat capacity and refrigerating effect
- There is a direct correlation between CFM and compressor operating cost
- CFM/Tr is a measure of the relative efficiency of the system.

Refrigerant	Temp	Refrigerating Effect (BTU/Ib)	CFM/Tr
HCFC-22	10/95	67.63	3.17
	20/85	70.77	3.03
CFC-12	10/95	48.71	5.45
	20/85	51.16	5.18
HCFC-502	10/95	43.38	3.40
	20/85	46.34	3.19
R-717	10/95	465.07	3.14
	20/85	476.71	3.06
R-134a	10/95	41.13	5.74
	20/85	64.57	5.43
R-507	10/95	44.54	3.31
	20/85	48.41	3.04
R-404a	10/95	45.80	3.49
	20/85	49.90	3.21

Refrigerant Safety

- How to determine how safe a refrigerant is
 - o **Toxic**
 - o Flammable
 - o Self-Alerting
 - o Reactive
 - o First-Aid
 - o PPE

- Hydrostatic Expansion
 - Liquids evaporate when heated
 - o Vapors expand when heated
 - Vessels may rupture if filled too full

ODP and GWP

- **ODP** Ozone Depletion Potential
- **GWP** Global Warming Potential

GWP of Various Refrigerants

Refrigerants	GWP
HFC-23	14,200
CFC-11	4,750
CFC-12	10,900
HCFC-22	1,790
HFC-134a	1,370
R-717	Under 1
R-500	8,100
R-404a	3,700
R-744	1

Montreal Protocol

- Formed in 1987
- Currently has been ratified by 197 parties
- Regulates high ODP
 refrigerants

R-22 Phaseout

• No new or imported R-22 will be allowed in the U.S. on or after Jan. 1, 2020.

R-22 Phaseout Slashes Supply to 18M Pounds

Refrigerant Phaseout, SNAP changes, and more will affect HVACR industry in 2016

REFRIGERANT RETROFIT: An HVAC technician retrofits a residential air conditioning unit from R-22 to Freon™ MO99. Photo courtesy of the Chemours Co.

February 8, 2016

Jen Anesi Roby

KEYWORDS Climate Action Plan / HVACR regulations / Paris Agreement / R-22 phaseout / refrigerant recovery Reprints Of the dozens of regulations that have been issued the last few years, the U.S. Environmental Protection Agency's (EPA's) rule governing the <u>production and importation of</u> <u>hydrochlorofluorocarbon (HCFC)-22</u> has had perhaps the most immediate impact on HVACR contractors. Additionally, the EPA's Significant New Alternatives Policy (<u>SNAP</u>) Program, <u>Section 608 of the Clean Air Act</u>, and President Barack Obama's <u>Climate Action Plan</u> have all shaped the ever-changing refrigerant landscape. And, with no signs of this regulatory action slowing, 2016 is set to be another year full of significant changes in the refrigerant market.

R-22 PHASEOUT CONTINUES

S 🛛 🧧 🕈

In October 2014, the EPA announced its final phasedown schedule regarding the production

California Air Resources Board

- Refrigerant Management
 Program
 - o Registration
 - o Reporting
 - Recordkeeping

Refrigerant Management Program (RMP)

What size is your facility?

The size of the largest system determines facility size

Large ≥ 2,000 lbs. of high-GWP refrigerant Large facilities must register and report immediately

Medium

≥ 200 lbs. < 2,000 lbs. of high-GWP refrigerant

Medium facilities must register and report immediately

Small

> 50 lbs. < 2 00 lbs. of high-GWP refrigerant

Small facilities must register by March 1, 2016

Types of Refrigerants

- CFC
- HCFC
- HFC
- Azeotropes
- Zeotropes
- Hydrocarbons
- Inorganic Compounds

Pros/Cons - CFCs

Pros	Cons	Refrigerants
 Relatively inert Relatively low boiling points Relatively low toxicity Relatively low flammability High thermal stability 	 Has detrimental amounts of ODP Significant GWP Phased out by the Montreal Protocol Virtually undetectable by human senses Miscible in oil 	• R-11 • R-12 • R-114 • R-115

Molecular Structure

Pros/Cons - HCFCs

Pros	Cons	Refrigerants
•A lower ODP than	 Has detrimental 	• R-22
CFCs	amounts of ODP	• R-123
 Relatively inert 	 Significant GWP 	• R-124
•Relatively low boiling	•Being phased out by	
points	the Montreal Protocol	
•Relatively low toxicity	 Virtually undetectable 	
•Relatively low	by human senses	
flammability	•Miscible in oil	
•High thermal stability		

Molecular Structure

Pros/Cons - HFCs			
Pros	Cons	Refrigerants	
 An ODP of Zero Relatively inert Relatively low boiling points Relatively low toxicity Relatively low flammability High thermal stability 	 Possesses GWP Virtually undetectable by human senses Miscible in oil Requires synthetic lubricant oils 	• R-134a • R-152a • R-23	Molecular Structure

Pros/Cons - Azeotropes

Pros	Cons	Refrigerants
 Most azeotropes have either no ODP, or very slight ODP The components of the azeotropes will not separate under normal operating conditions 	 Azeotropes tend to have high GWP Azeotropes cannot be recycled because of the blend of refrigerants that make it up 	• R-500 • R-502 • R-507

Pros/Cons - Zeotropes

Pros	Cons	Refrigerants
 Many zeotropic mixtures have no ODP, or an ODP similar to that of HCFCs. Zeotropic mixtures can improve on the thermodynamic qualities of its constituents 	 Zeotropic mixtures tend to have high GWP. Zeotropes do not maintain a constant temperature- pressure while changing states Zeotropes cannot be recycled because of the blend of refrigerants that make it up 	• R-404a • R-410a • R-407a

Pros/Cons - Hydrocarbons

Pros	Cons	Refrigerants
 Non-toxic No ODP Highly efficient Can replace many other refrigerants without requiring the oil or components being changed Low GWP 	•Extreme flammability risks	• R-290 • R-600 • R-600a

Pros/Cons - Ammonia

Pros	Cons	Refrigerants
 An ODP of zero A GWP of less than 1 Cheap, and easy to synthesis Very good thermodynamic properties Easily detectable 	 Extremely toxic Heavily regulated Volatile Flammable 	• R-717

Future of Refrigerants?

- Packaged, air-condensing units using natural refrigerants
- <u>Azanefreezer</u>

Questions?